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SECTION 1.0

Introduction and Study Ovu'view



1.0 Introduction and Study Overview

As its name suggests, the Maximum Entropy/Optimal Projection (MEOP) theory of control

design for large space systems represents the synthesis of two distinct and novel ideas: (1) min-

imum information stochastic modeling of parameter uncertainties (to characterize the inevitable

tradeoff between robustness and performance) and (2) optimal reduced-order compensator design

for a given high-order plant (to optimally quantify the tradeoff between controller complexity and

performance). A previous AFOSR-funded study (contract no. F49620-84-C-0015) consolidated

MEOP theory developments and successfully demonstrated the theory on a variety of flexible space

structure models.

It is now possible to extend the basic MEOP theory and design capability to handle an even

larger class of structural concepts. In particular, the sheer size, or dimensionality, of proposed

flight structures (such as Space Station) necessitates what may be called decentralized analysis

and design. In brief, this terminology refers to procedures which treat portions of thie system

individually and then combine the results. Often the need for such analysis arises from such basic

constraints as computer capacity, i.e., the model may simply be too large to be manipulated by the

* computer at one time.

Our thinking concerning decentralized analysis and design is closely related to the current lit-

erature on large scale systems. Our goal is thus to go beyond previous work by using the MEOP

theory to quantify uncertain interactions among subsystems, thus providing an informational sys-

tem partitioning. A major goal in this regard is to utilize our theory to extend the applicability of

the concept of connective stability to complex, multibody spacecraft.

In practice, a direct consequence of the physical size and physical complexity of proposed

spacecraft imposes severe constraints on the communication links between sensors, processors and

actuators. Relevant issues include cabling mass and RF shielding problems along with reliabil-

ity concerns. This leads to consideration of multiple sensor/processor/actuator subcontrollers or

substations on the spacecraft without real-time intercommunication. Although the processors do

not directly exchange data, preflight design of their software must, of course, account for complex

operational interactions among subcontrollers via the structural response.

The design of such a decentralized architecture or implementation is clearly a nontrivial task

and can be thought of as involving two interrelated steps:
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1. Determination of the control-system architecture including the number of substations and

the assignments of sensors and actuators to particular substations; and

2. For a given architecture, design of the processor software for each subcontroller.

The aims of the present study are to extend MEOP to address both of the above items. Indeed,

because maximum entropy modeling quantifies uncertainty (i.e., lack of knowledge) it is possible -

to directly include informational aspects in the system model. One goal is to quantify the degree

of suboptimality resulting from interaction uncertainties and alternative controller architectures.

Once a particular architecture is selected, the design of each subcontroller often requires iterative

solution of high-dimensional design synthesis equations. A second major goal is thus to evolve

efficient approaches to the solution of the MEOP design equations for optimal, decentralized control.

1.1 Objectives

The specific tasks required to accomplish the goals of this project are discussed in detail within

the original technical proposal and are summarized as follows:

Task 1:

Undertake rigorous extensions of the MEOP design equations to the case of distributed (decentral-

ized) controller architecture in a variety of settings. These developments include:

1.1 Extension of the continuous-time MEOP equations to the decentralized case.

1.2 Derivation of the MEOP design equations for decentralized discrete-time control of discrete-

time systems.

1.3 Extension of the MEOP design equations to a hierarchical controller architecture.

Task 2:

Develop methods for determining performance degradation due to uncertainty so as to evaluate

the performance of different decentralized architectures with controllers obtained via the design

equations derived in Task 1. In particular:

2.1 Derive methods for bounding the degree of suboptimaiity resulting from decentralized

design and decentralized implementation.

2.2 Evolve effective methods for deriving uncertainty bounds which imply connective stability
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for the overall system.

t Task 3:

Verify the analysis carried out in Task 2 and develop solution techniques for the decentralized form

of the MEOP design equations. The following sequence of developments was carried out:

m 3.1 Develop more efficient techniques for solving the MEOP centralized control design equa-

tions. In particular, apply topological degree theory to elucidate the solution set and es-

tablish the globally optimal solution. Then develop homotopy methods for highly efficient

numerical solution of the centralized design equations.

3.2 Exploit the developments of 3.1 to analyze the existence, uniqueness, and global optimality

of solutions to the decentralized MEOP design equations derived in Task 1. Utilize the

homotopy algorithms derived in 3.1 to establish a convergent solution procedure for the

decentralized design equations.

Task 4:

Apply the various decentralized extensions of MEOP to realistic design problems. For each of the

selected design examples the following subtasks encompass the desired goals:

4.1 Generate detailed state-space model, define uncertainties, define sensor/actuator number,

type and placement, and assign disturbance spectrum. Use system model to perform cen-

tralized control-tradooff studies S ich designs may utilize decentralized design techniques.

4.2 Using the centralized tradeoff studies as baseline, determine decentralized/hierarchical im-

plementation architectures based upon uncertainty patterns, physical constraints and pro-

cessing requirements. For each design assess the degree of suboptimality resulting from the

loss of centralization.

1.2 Outline of Program Accomplishments

In this section, we briefly summarize the results obtained under the tasks listed above. Further

details are given in Sections 2.0 through 5.0 and the Appendices.

Since developments under Task 2 are not only of fundamental significance to MEOP design

but also represent the discovery of entirely new design analysis tools, these accomplishments are

discussed first in this report.
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The essential problem to be addressed in subtasks 2.1 and 2.2 is the determination of non-

conservative bounds on system performance degradation due to uncertainties and/or subsystem

interactions. Note that once performance degradation (e.g., line-of-sight error, surface shape er-.

rors) is characterized, so is robust stability. Thus both 2.2 and 2.3 are handled by developing a

suitable performanLa robustness analysis. This has been accomplished by the development of a

new robustness analysis tool, namely, Majorant Robustness Analysis (MRA). Based upon the work

of Ostrowski and Dahlquist on matrix majorants, MRA determines bounds on the degradation of

system performance due to unstructured or parametrically structured uncertainties and bounded

subsystem dynamics. Since the basic development is carried out in a general operator setting,

MRA can be applied within both frequency-domain/input-output and time-domain/state-space

descriptions. In the frequency domain/input-output setting MRA generalizes previous robustness

results (e.g., singular-value analysis), while in the state-space setting it is fully compatible with

MEOP design synthesis. MRA thus provides a design analysis tool which nicely complements our

design synthesis theory. Moreover, MRA reveals a direct link between the MEOP stochastic mod-

eling and design formulation and a deterministic bound for robust performance, thereby immensely

strengthening the foundations of the Maximum Entropy modeling approach. Section 2.0 outlines

the theory of MRA and illustrates its application to statistical response, frequency domain analysis,

and, finally, time-domain analysis of system transient response.

With the development of MRA as a rigorous design analysis tool, one is in position to formulate

the problem of robust decentralized control as a well-posed optimization problem. The robust

optimization problem reduces to the optimization of controller gains for fixed-structure controllers

under a Maximum Entropy stochastic system model (or, equivalently, under a MRA model). The

application of optimization theory to the theoretical solution of these fixed-structure optimization

problems (i.e., the derivation of optimality conditions) is the essence of Task 1 and has been fully

carricd out. More details on the resulting MEOP design synthesis equations for decentralized and

hierarchical controllers is given in Section 3.0.

The MEOP design equations derived under Task 1 show that the optimality conditions for

robust decentralized/hierarchical controllers can be decomposed into a sequence of design equations

involving four nonlinear matrix equations for each control substation or coordinator. Each set

of four equations has the same fundamental structure as the four MEOP design equations for

centralized control design. This surprising decomposition of the structure of the decentralized

hierarchical MEOP equations immediately suggests an iterative solution procedure which reduces

1-4
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the overall problem to the sequential solution of standard MEOP design equations pertaining to

i teach subcontroller and/or coordinator.

The above observations have greatly simplified the development of efficient solution algorithms

under Task 3. Since, however, each subcontroller problem may be of high dimension and the

unber of subsystems may often be considerable, it was recognized that an order of magnitude
improvement was needed for the efficiency of the MEOP solution algorithm. Thus, we proceeded in

two stages: Develop greatly improved solution techniques for the MEOP centralized control design

(Task 3.1), then exploit the results for solving the decentralized/hierarchical design equations (Task

3.2).

Under Task 3.1, S. Richter has developed and successfully tested a homotopic continuation algo-

rithm for solving the basic MEOP design equations. In place of solving four (n x n) (n = dimension

of the plant) nonlinear matrix equations as in previously developed algorithms, Richter's method

reduces the problem to solving four n, x n (n, = dimension of compensator) linear equations for a

modest number of continuations steps. The algorithm converges to machine accuracy, and for n,

small actually entails less computation than is required for the standard Riccati solutions involved

3 in the full-order compensator. Moreover, using the continuation approach together with topologi-

cal degree theory, Richter has succeeded in resolving many heretofore intractable issues connected

with multiplicity of solutions and convergence to the global minimum. These results essentially

complete the theoretical foundation of the optimal projection theory of fixed-order dynamic com-

* pensator design. It should also be noted that in a broader context, these results illustrate a new

general approach to nonconvex optimization problems. Further details on the iterative approach

to decentralized design and on Richter's algorithm are given in Section 4.0.

Finally, both dynamic modeling and determination of baseline centralized control designs have

been completed for a variety of realistic example problems thus completing Task 4. These are

discussed in numerous publications and are highlighted in the body of this report.
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2.0 Performance Degradation Due to Uncertainties and Subsystem Interactions
Via Majorant AnalysisU

The problem addressed here is the determination of bounds on the degradation of system per-

formance due to uncertainties and/or unforeseen and imperfectly modeled subsystem interactions.

Such bounding techniques represent a fundamental systems analysis tool that is indispensable for

further elucidation of decentralized controller architectures and robust design.

Extensive work has been carried out in the area of frequency-domain analysis-of robust stability

giving rise to the H-infinity theory of robustness characterization and robust design [2.1-2.5].

- However, although the H-infinity world-view is a beautiful and compelling theory within its proper

province, its fundamental assumptions render it inapplicable to structural vibration control which

involves parametric and often nondestabilizing open-loop uncertainties. A principal difficulty is the

conservatism of H-infinity robustness characterizations. A stability robustness analysis technique

is called conservative if the predicted set of nondestabilizing perturbations is a proper subset of the

actual set of nondestabilizing perturbations. Note that conservatism jointly depends upon both

the definition of admissible perturbation classes and the robustness analysis technique.

The well-known conservatism of H-infinity theory does not arise because it operates in the

frequency domain, per se, or because the infinity norm is employed, but rather because of the

crudeness of H-infinity bounds. What is the fundamental source of this crudeness? Possibly this

arises because the fundamental intent of H-infinity development was the eztension of classical

*I control design concepts to the multivariable case per se rather than specifically for the problem at

hand.

For example, in keeping with classical ideas, there has been widespread insistence upon couching

all questions of performance and uncertainty in terms of simplistic (albeit traditional) unity gain

feedback diagrams. Thus, singular value developments have lumped uncertainty in a single block

thereby obscuring the often complex structure of modeling error. Moreover, this feedback paradigm

is maintained even for structured uncertainty approaches [2.6].

To achieve a less confining point of view, the first step is to represent uncertain systems by

means of a large-scale system input-output formulation as depicted in Figure 2.0-1.

Referring to Figure 2.0-1, the overall system is represented by interconnected subsystems un-

dergoing interactions. The subsystems, characterized by the operators Gk (k = 1,..., r), represent

2-1



vi + ei Yi• 1 LI4

Hily1  Hiryr (i=l...r)

(I + GH)y =y

YO A Gv

G = block-diag {Gk); Gk known
k=l...r

0 H12 H13 ... some compact,

H = H21 0 E:23  arcwise connected set with

H31 H32 0 off-diagonal block structure

LJ

uncertain subsystem , specifies
interactions or uncertainty about H
parametric uncertainties

Problem: Bound output y or deviation from nominal, y-y0'

for all HE E

Figure 2.0-1. Large-Scale Input-Output Formulation
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the known dynamics of the system while the subsystem interactions, given by the operators Hkj,

* correspond to uncertainties. Note that the partitioned off-block-diagonal operator H is stipulated

to belong to some compact arcwise connected set ). The set ) specifies both the character and

extent of dynamical uncertainties.

The motivation for the above input-output formulation within the context of large-scale systems

is obvious. But in addition, thanks to the Dynamic Inclusion Principle and related ideas elaborated

by Siljak and his co-workers [2.7,2.8] the representation of Figure 2.0-1 is also suitable for parametric

perturbations in monolithic systems, i.e., systems without explicit interconnections.

The problem now addressed is how to bound the degradation of the system output vector y or

the prediction y - y0 in the presence of the uncertainties. To give this problem mathematical form,

we must use the block-matrix results of Ostrowski [2.9] and define the block-Lp norm matrix of a

partitioned operator R and the block-norm matrix of a partitioned matrix M as in the top half of

Figure 2.0-2. With these definitions, the principal problem is to bound the block-norm vector of

the system output y over all variations of the uncertain perturbations, i.e., I[/tL as H varies over

the whole set M. Bounding off-nominal prediction errors is handled similarly and so will not be

given separate treatment here.

Referring again to Figure 2.0-2, it is evident that a suitable bound for lyL takes the form of a

nonnegative matrix (i.e., a matrix whose elements are nonnegative) 1 multiplied by the block-norm

vector of the nominal output. Note that the double inequality sign relating two matrices indicates

element-by-element inequality. The "gain matrix" A is just a nonnegative bound on the worst-case

value of the block-LP norm matrix of the output gain operator C. Note that, in essence, t maps the

nominal output into the actual output as corrupted by uncertain interactions. In the following, we

focus on bounding the gain operator. Note (from the bottom of Figure 2.0-2) that this formulation

gives rise to a clear definition of conservatism. Note also that the existence of a finite bound 2(X)

implies input-output stability (see [2.10]). Thus robust stability and performance degradation can

be handled by one and the same theoretical apparatus.

Now, the above articulation of uncertainties into numerous interactions permits more finely

articulated methods of computing bounds beyond singular value analysis, namely, methods associ-

ated with the majorant analysis of Dahlquist [2.111. Following Dahlquist, we define the majorant

and minorant matrices of a partitioned matrix or operator as in the top portion of Figure 2.0-3.

The inequalities shown in the center of the figure follow directly from the definitions and indicate
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(A.I.. Ostrowski, J. Fatb. Anal. ArDl., Vol. 2, pp. 161-209, 1961.)

Block-L norm matrix of K:

p
F1 11 LI ,p ",12 I p ..

rxrLp = E +

?"21 L p 22 L p

Block-norm matrix of K: :11 1 p 1 '121 IIp . ._

CRrxr

I F, 21 1p N 22 !p..

Output bound:

IYIL X-;0

where X e rxr and

(~ ) sup h  = (?t)

where:

(I + t d I I

Conservative bound: z ;*

Nonconservative bound: ; X!

FiniteZ(?t) exists ===> Input-Output L stability

Figure 2.0-2. Block-Norm Matrices
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i

(G. Dahlcuist, Lin, AlQ, AppI., Vol. 52/53, pp. 199-216, 1983)

_W A rxr

Maorant: A R+ A >> A IL

?Finorant: A £ Z xr Akk < NA-ll'-

Akj < -IIAkl I k ,, j

Inecualities:

IABIL <5 AB

I 5 +

I A-' L << (A)

v- a

A - B = minorant of A + B

* A and A are generalizations of maximum and minimum singular values

* Majorant/Hinorant inequalities can be used to develop bounds on {;CL

Figure 2.0-3. Matrix Majorants and Minorants
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that the majorant and minorant are matrix generalizations of the maximum and minimum singular

values, respectively. Moreover, these inequalities can be very efficiently used to bound the block-Lp

norm matrix of the output gain operator. In fact, what we seek is merely some majorant of the

gain operator.

Figure 2.0-4 shows a simple example of how the inequalities of Figure 2.0-3 can be used to

derive such a majorant for the gain operator, starting from the defining relation

(I+ GH)C = I

for Z given in Figure 2.0-2. The result obtained in Figure 2.0-4, namely:

IC iL :5:5-

(I- GH)C = I,

is, in fact, the crudest possible majorant bound and is equivalent to the small gain theorem for

LP input-output stability of a large scale-system [2.10]. When there is only one system block, this

further reduces the singular-value bound as a particular special case.

But the uncertain subsystem interaction format (introduced in Figure 2.0-1) in conjunction

with majorant analysis gives an almost unlimited potential for formulating sharper bounds. Using

a process of operator iteration, one can obtain the results displayed in the top half of Figure 2.0-

5. Here we have a hierarchy of output bounds, where each successive member of the hierarchy

requires more and more information but is less and less conservative (with respect to the set N).

For the results shown in Figure 2.0-5, the sequence of bounds approaches the least upper bound

under a norm-bounded uncertainty set, i.e., for this set K the hierarchy is nonconservative in the

limit! Note also that, because we work in an operator setting, distinctions between the time and

frequency domains are blurred. It is parochial to assert that only frequency-domain or time-domain

methods must be used. What's needed is easy and fluent translation between the frequency and

time domains as provided here. Furthermore, the computational advantage of this kind of hierarchy

is that each bound requires only the inversion of an M-matrix. This is quite straightforward and

nicely tractable, even for many subsystems, since it involves computing a monotonically increasing

sequence where each iteration involves an addition and a multiplication of low-order matrices.

Figure 2.0-6 summarizes the relevant facts on the solution of majorant equations. One has only _

to contrast the simplicity of these results with the difficulties of the p-function computation 12.12
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* IL I(I + U-IL.

<< (I4GI)

-

< (I4) 1 O- I

<< (Ii ]

< [(I-GH w -i

la a

(I-G4)a = I r

ir

* Bounding ' IL means: Find a ajorant oft-V H e?

* This is the crudest possible bound,

r = I -> singular value inequality

* There are much more refined bounds

- obtained by iteration of operators...

Figure 2.0-4. Example of Bound Derivation
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n.th (m = 0, 1,...) member:

x IL j< L(m) V H t

G(m) k sup I(GH) 2mL rrHQ m

m-I2r) rxr
(m) A sup rn7 (I+(-GH) 2  L EPr+

He)j r=0

* Each member of the hierarchy requires more information and is

sharper and sharper:

L(0) >> L (  >> L (2 ) >> ...

" Lowest member: L 0 )  (IG I

* If e= : {H IL - rxr; Hkk- 0), then:

li, L(m)

- i.e. L(m ) is nonconservative in the limit

* Input data can be given in time-domain or frequency domain

- as appropriate

* Each member of the hierarchy requires only inversion

of an rxr N-matrix

a

Figure 2.0-5. Hierarchy of Lp Output Bounds
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All majorant bounus involve equations of 
the form:

(I r-B)L = C

C, E . _rxr

" L e Rrxr exists iff (I-B) is a nonsingular K-matrix

"L Rrxr exists iff the sequence:

L= 0

(t-{SB)Ln+l 
ff <E>Ln + C

({B} = diagonal part of B

<B> B -{Bfl

converges. If so, L - lim Ln
n -wo

L e4Rrxr exists iff the sequence:

A 0 - (I-{B)- 1<B>, S0 = I + A 0

K > 0: A+ 1  Ak2 ; S = Sk(I+Akl)

converges. If so:

L a lir Sk(I-IB) - I C
k-0

(nth iterate 
- 2n simple iterations)

Figure 2.0-6. Solution of M-Matrix Equations
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to appreciate the ,..)wer of the "uncertain subsystem" representation of Figure 2.0-1 and its allied

bounding technique, majorant analysis.

The 'above discussion has set forth the general development of majorant robustness analysis

within an operator setting which employs LP norms to describe the "size" of subsystem outputs.

For systems with stochastic inputs and time independent parameter uncertainties, the main lines of

development are analogous. However, in this case one needs to work with the Lyapunov equation

for the steady-state second-moment matrix of response and then derive majorant bounds for the

block-norm matrix of the second moment. The general setup for undertaking majorant analysis for

the parametrically uncertain stochastic systems is shown in Figure 2.0-7. Here, the block-diagonal

matrix A represents the known subsystem or nominal system dynamics while the off-block-diagonal

matrix G represents uncertain subsystem interactions or parametric uncertainties. Generally, C is

stipulated to be some element of a compact, arcwise connected set 9 which describes the geometry

and severity of uncertainties. The simplest prescription, for example, is that 9 contains all off-

diagonal block matrices such that the norm of each off-diagonal block is bounded by a stipulated

number.

Note that the disturbance intensity matrix V and the second-moment matrix Q are partitioned

conformably with A and G. We bound performance degradation due to uncertain interactions G

ranging over the admissible set 9 by bounding the block-norm matrix of Q. To do this, however,

requires additional algebraic tools, such as the Kronecker algebra which centers on the VEC oper-

ator, Kronecker product, and Kronecker sum. These operations, which are defined by the relations

shown in Figure 2.0-8, are critical to the development. The reader is encouraged to consult the

review paper by Brewer [2.13] for a thorough discussion of the Kronecker algebra. Because of the

algebraic complexity of deriving majorants for the second-moment matrix, the Kronecker algebra

is far more than a mere notational convenience.

For our development, the standard Kronecker algebra is a completely adequate tool only when

each subsystem (with dynamics Ak, k = 1,... ,r) is one-dimensional. However, we are concerned

with systems composed of many high-dimensional subsystems. To handle the algebraic work,

one needs a generalization of the Kronecker algebra, namely, the block-Kronecker algebra. The

underlying operations of the VECb operator are the block Kronecker product and sum which are

displayed in Figure 2.0-9. Note that while the VEC operator stacks the columns of a matrix into a

vector, the VECb operator stacks the VEC's of the columns of subblocks in a partitioned matrix.
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"=(A+G)x+w O-(A+G)Q+O(A+G)T+V

A1  a---- Gil G 12 -

A= 0 A2 G= G21 G2 2

I I

Known Subsytem Dynamics Uncertain Subsystem Interaction
and Nominal Dynamics

-V11 V12 0(11 ()442---

IIV =V21 V22 O= 021 022
I V 2  rI~ 2

[Ii v \ I
Noise Intensity State Covariance

Um

Figure 2.0-7. Subsystem Interaction Model
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" Definitions "

( V. 1. Brewer, IEEE Trans, Circ. Sys., Vol. CAS-25, pp. 772-781, 1978.)

(P, A, T. R n xn

VEC operator, vec(K):

vec (M) ?/N11

M21

*n I

}12

22

Kronecker Product, ®
A B 11 B a12E a B

a12B a2 2B .. 2nB

anIB an2B ... annB

Kronecker Sum, G

A B A® In + In ( B

Figure 2.0-8. Kronecker Matrix Algebra
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" Definition -

1. Block vec operator, vecb(II).

If M [ ,then:

E21 '22

- vec V

vec V21

vecb M _ vec* Mr l

vec 12

vec r2•r 2

2. Elock Kronecker Product, S
'A 11 B A12 OB ... A1r B

A E A 21 E A 22 B ... A2r B

[A B Ar2 @B ... Art B I
where:

V A11 le A12 - M0AI
M A h K® A F1 I A ft. O A21 22 - 2r

A ri M @ r2 M rr

3. Block Kronecker Sum, QD

A Q) B - A e I + I 4 B

4. f.}, <.> and vecbd:

{M) A bl-diag (Mkk}, <N> A V, - (M}

vecbd V- vec M22

vec Vrrr

Figure 2.0-9. Block-Kronecker Algebra
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If the subblocks of the partitioned matrix M are all one-dimensional, the block-Kronecker algebra

definitions given in Figure 2.0-9 revert to those given in Figure 2.0-8. Moreover, the block-Kronecker

algebra is endowed with the same battery of identities as in the standard Kronecker algebra. These

identities, shown in Figure 2.0-10, are invaluable in effecting the required algebraic manipulations

to obtain the results discussed below.

In particular, using the block-Kronecker algebra, one can first reduce the second-moment Lya-

punov equation into a rather compact equation determining the diagonal subblocks (the individual

subsystem second-moment matrices) alone. This equation is the second from the top in Figure

2.0-11. With this as the starting point, one then applies majorant analysis to obtain a hierarchy of

majorant bounds as shown in the bottom half of Figure 2.0-11. As in the Lp bound analysis, each

successive member of the hierarchy offers less and less conservative bounds.

Note that having obtained the expressions shown in Figure 2.0-11, we do not calculate the

block-Kronecker sums and products explicitly. Rather, in each case, we reverse the VECb cperator

to reduce each member of the hierarchy of bounds to a low-order modified Lyapunov equation for

the matrix majorant of the second-moment matrix.

We now consider in more detail the first two members of the majorant hierarchy in order to

illustrate the specific forms of the modified Lyapunov equations that are obtained. For example,

Figure 2.0-12 shows the first member of the second-moment majorant hierarchy. This gives the

majorant Q as the solution of a simple nonnegative matrix equation, where * denotes the Hadamard

(element-by-element) product and the dimension of the equation is the number of subsystems. For

the norm-bounded uncertainty set shown in Figure 2.0-12, the existence of a nonnegative solution

implies a bound for the block-norm matrix of the second moment in addition to robust stability,

i.e., A + G is stable for all perturbations G in the norm-bounded set.

One particular advantage of the first member of the hierarchy is that it correctly shows the

effect of wide frequency separation of subsystems on performance degradation and robust stability.

This effect is illustrated in Figure 2.0-13. Here we have two subsystems whose poles are indicated

by the crosses in the complex plane, with t, and L2 denoting the damping of the subsystems and

w 1- 2 the separation in frequencies. The majorant equation in Figure 2.0-12 gives the expression

shown in Figure 2.0-13 for the square of the tolerable interaction strength under which stability

is preserved. Thus, if the frequency separation (W1--W2 ) is large, then even very large uncertain

interactions can be tolerated. In contrast, the vector Lyapunov function theory of [2.7,2.8] would
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Ic.dntities

I.1 (A+B) 0 C = A 0 C + P , C

1.2 A (B+C) = A B + A C

1.3 (A ® B) T A T BT

1.4 (A )E) (C ® D) = (AC) ® (BD)

1.5 (A A -) = A 1 B

1.6 vecb (AYB) = (BT  9 A)vecb Y

1.7 vecb (AX + XB) (BT G A)vecbX

1.8 vecb({M}) = vecb(F4)

- (k, k) E(k,k)

e(k,k) = a {
e = cag 1 mu=1. .r

E E (k 'k )  bI -diag 11n 8in

in n k k

1.9 vecb (<M>) = vecb(M); 91 ! 1n2"

1.10 vecb (Ml) = vecbd(M)

r kr (k ,k )  (k,k) e(k,k)

e @ E ; n = nk
k=1

1.13. In

1.12TT

Figure 2.0-10. Idcntities for the Block Kronecker Algebra
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T

0 (A+G)Q + Q(A+G) + V
<;>

vec Qvec V 1

Iv + p ( veQ: = vec V

vec Q rr vec Vrr

v - block-diag (Ak e Ak )
k=l...r

±LP eT (CEDG) [A e + G G I]-.o (G 6)G)f

Letting Z (Qll C22'C'rr); Y (V11 , V2 2 ,*Vrr) apply majorant

analysis to get a hierarchy of bounds for the majorant of vecbd Q:

ist menber: TJ[V- (G (9 G) [A (E A-G E J &(

2nd member:

[V 2 - P 2 1 Z v

v2 - g v + T(G ( G)(A E A)-(G G)

2 'T( ( G) (A G A) 1 4G 4D G[A $ A +G E) G6'CGf) G)e

etc.

Figure 2.0-11. A Hierarchy of Majorant Bounds for the Second-Moment Matrix
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I

I

- j2A*Q=m9Q+Q9gT+V

U(Gij) :5- ij

QQ

w Robust Stability

*I *Robust Performance

Figure 2.0-12. Majorant Lyapunov Equation
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ROBUSTNESS DUE TO WEAK
SUBSYTEM INTERACTION

MAJRAT LAPNOVEQATIN OUN 4v 1 v2
2
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give V1 + V 2 which is a much more conservative result for lightly damped systems. Thus, the

majorant equation will correctly predict that as frequency separation becomes sufficiently large,

subsystems become effectively decoupled. Such predictions cannot be made by either the small

gain theorem for large-scale systems or by vector Lyapunov theory. Thus, even the first member

of the majorant hierarchy offers greatly reduced conservatism compared to previous results.

m Moreover, note that thanks to the properties of M-matrices, the first (and all higher) members

of the hierarchy of majorant bounds require only a simple iterative sequence for their computation.

The relevant facts are summarized in Figure 2.0-14. The sequence is monotonically nondecreasing,

and each iteration requires only two matrix additions, two multiplications and a Hadamard product

for its computation. Convergence of the sequence implies robust stability while the degradation of

a quadratic performance index J from its nominal (zero interaction) value J0 is given in terms of

Q by the simple expression at the bottom of Figure 2.0-14.

Furthermore, the second member of the second-moment majorant hierarchy, shown in Figure

2.0-15, gives even tighter bounds and can even predict the nondestabilizing effect of certain kinds

of perturbations. The form of the majorant equation (top of Figure 2.0-15) is similar to the

first member of the hierarchy except that the operator N (Q] appears. This operator is precisely

what would arise in the equation for the second-moment matrix for a system with Stratonovich

multiplicative noise parameters! So far, we have discussed a design analysis tool for predicting

performance degradation due to uncertainty. This crucial observation brings us to consideration of

* the link between majorant robustness analysis and MEOP design synthesis theory.

Figure 2.0-16 illustrates this link and the accompanying sequence of logical developments.

Overall, one may regard the MEOP design synthesis theory as arising from a particular robustness

analysis tool. Although any member of the second-moment majorant hierarchy might be chosen as

the basis of a design synthesis theory, we choose the second member of the hierarchy (see the lower

right block in Figure 2.0-16) to serve as the point of departure since it is the simplest bound that

also handles nondestabilizing uncertainties. Referring to the lower left block of Figure 2.0-16, it is

seen that the second-moment equation of a multiplicative Stratonovich noise model essentially gives

an approximation to the majorant equation and a smooth optimization problem. The Stratonovich

second moment equation then leads to an auxiliary optimization problem (upper left block in Figure

2.0-16), namely, cnoose dynamic compensator gains to minimize the quadratic performance of a

system having multiplicative stochastic parameters. Because of the Stratonovich modifications to
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MLE has a uniqu, solution Iff (QK, K=0, 1, .. , 1 where:

Qo=O

QK+1 (.fl! *19 QK + QKT+)

(Jin 9Thinn)

c.nverges. If so, then:

Q = 1im QK
K-

r A

J - JO < 2. (tr lK)(SQ)KK
K=1

-T ^

Figure 2.0-14. Numerical Solution of the Majorant Lyapunov Equation
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- Second member of the hierarchy:

r
Jtr[6R] _ 21. (tr P"K)(9< Q>)KK

K=1

0=AQ+ OAT+ H[O]+V
0O=ATP+ PA + W(P] +R

where:
<Q> off-diagonal part of Q

* FLU]Stratonovich model operator

*Tighter bound-incorporates more information on A and G
*Predicts stability when (A + AT) stable, G= G

* * "Nominal" performance, tr [6R], given by Stratonovich model

Figure 2.0-15. Second Member of the Majorant Hierarchy
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Auxilliarl Optinization Problem OPME Design Equations

T A. AA V, 10+.ioA, .*-. CAT + + v .V 1 .'4- 2~1 O .* as - ~*A
T

P.PA.*4O
1

-.ft V T- ' m T* T I

J = * ("P A,4*~ *)T* a'.-.'*~ hS h

5 tr -[R] .20 . ,.

A =t

Find K,F,A to minimize Y •
C

Stochastic Design Kodel Majorant Hierarchy

Stratonovich 2nd Moment Equation 0th: ( C-)C + Q(r-) T + e =0

QA + iI + + v 1st: A*Q =.-& Q + Q'9 +'

10 <2nd: A*+C 1

-4z>+ <^> T +'J( ) - - >I

3rd: A*" +N 3[0] =

Figure 2.0-16. Majorant Hierarchy and Stratonovich Models:
the Link Between Analysis and Synthesis
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the standard form of the Lyapunov equation that appear in the equation for Q, the robust stability

condition implied by the majorant equation is still enforced since the optimization problem imposes

a robust performance constraint.

The optimization of an apparently stochastic system actually approximates the majorant bound

which was derived purely deterministically and leads to the rather elegant MEOP optimality con-

ditions given in the upper right block in Figure 2.0-16.

Of course, the use of Stratonovich stochastic models was earlier indicated by maximum entropy

principles and stochastic approximation theory, and this line of development still stands. But the

import of the more recent majorant analysis developments is that there is a direct link between

maximum entropy stochastic modeling and deterministic performance bounds. This link strength-

ens the foundations of MEOP synthesis theory and, most importantly, tends to blur the distinctions

*between stochastic and deterministic points of view. This is just as well since the task confronting

the systems and control theory community is not to resolve the stochastic versus deterministic

debate one way or the other, but rather to rise above it. As the work described here suggests, there

is a plane upon which the points of view are numerically indistinguishable.

U 2.1 Additional Extensions of Majorant Analysis to Frequency-domain Analysis
and to Time-domain Transient Response

The previous section outlined the general majorant theory in an operator setting, discussed its

application to the bounding of uncertainty effects on statistical response, and noted the connections

between second-moment majorant analysis and MEOP design synthesis theory. Here we discuss

additional developments of majorant theory which go beyond considerations of any particular design

synthesis approach to provide new and more powerful tools for system robustness analysis.

The first of these applications concerns the use of majorants for frequency-domain robustness

analysis. Here, we specialize to linear, time-invariant systems and assume L 2 system inputs and

outputs. Referring to the notation of Figure 2.0-2, let p = 2, and

Ie I=- sup IC(iW)12, (2.1-1)

where L(s) is a partitioned matrix of transfer function blocks and 1- 12 denotes the block-norm

matrix associated with the matrix 2-norm. Instead of dealing with t(M) and C (N) directly, we

seek tol,w) such that

t(,>) sup IC(iW)1 2 =
HEM
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In other words, we determine frequency-dependent bounds on subsystem transfer function blocks so

that the block-L 2 norm bounds are then easily obtained via relation (2.1-1). This approach permits

considerable insight into the impact of subsystem frequency response and generalizes singular-value

analysis.

Reference [112] specialized the majorant hierarchy of Figure 2.0-5 to the above setting to pro-

duce a frequency domain majorant analysis which can nonconservatively address highly structured

uncertainties. Numerical results given in [112] illustrate convergence of the frequency domain ma-

jorant hierarchy to nonconservative bounds which are clearly superior to singular-value analysis

and previously developed large-scale system methods.

A further extension of majorant analysis is concerned with analyzing the impact of uncertainties

on system transient response in the time domain. In essence, we specialize the formulation of

Figure 2.0-2 to Lo, input and output spaces. In other words, system inputs and outputs are

characterized as functions which are pointwise bounded in time. The general majorant hierarchy

has been specialized to this case both for continuous-time and discrete-time systems. Because

of its direct applicability to numerous current spacecraft pointing design problems, its utility in

establishing system identification requirements, and its potential for extension to nonlinear control I
system analysis, we discuss the discrete-time system majorant analysis results in more detail below.

Figure 2.1-1 depicts the basic formulation and motivation of the discrete-time majorant analysis.

Here, as before, we use a subsystem decomposition representation where the actual system differs

from the nominal system model via an uncertain interaction matrix G. Typically, we suppose that

the block-norm of G is bounded by some nonnegative matrix G so that G describes the magnitude

of the modeling uncertainties. More highly structured sets for G have also been considered. The

principal goal of the discrete-time majorant analysis is to determine a worst case bound on the

off-nominal prediction error, E(k) 4 x(k) - 2(k) as a function of the discrete-time index when G

ranges over the set of uncertainties (i.e., !GI :5< 6). To do this, the general majorant hierarchy of

Figure 2.0-5 has been specialized to this setting. Figure 2.1-2 explicitly shows that the 0th order

majorant is essentially a vector Lyapunov bound and the Ist member can be shown to be always

less conservative than the 0th order bound. Note that all these majorants represent upper bounds

for the exact worst case off-nominal prediction error E*(k), where E*(k) is defined as

E*(k) 4 sup Ix(k) -i(k)j.
GE9

Beginning with the first-order majorant, there is an associated lower bound for E (k). In other
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TIME DOMAIN MAJORANT
Sz,+l=Azk+Gzxk+u k; o= 0

ACTUAL SYSTEM A= diag (At); Ak stable

a = (C I~s<<e IR'"

NOMINAL SYSTEM { f+l = Ai* + vii, o = 0

GIVEN THAT I G & WHAT IS THE WORST CASE BOUND ON zk - 11, Es?

MORE SPECIFICALLY, FIND A NOT-TOO-CONSERVATIVE E(k) E 1Rf SUCH THAT:

za(k) - ik) 1< E(k)

VG :1 G <

Figure 2.1-1. Time-Domain Robustness Analysis Problem
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TIME DOMAIN MAJORANT

ZERO ' ORDER BOUND: Eik)

OBTAINED BY DIRECTLY MAJORIZING THE ERROR PROPORATION EQUATION

k(k) = Zcdid(t)+ [ (t) I]
t__0

HIGHER ORDER BOUND: k(k) (UPPER)

GIVEN

4t. (k) = E d.. I P..(k- I- ) I m,(I)

+ .,( - 1) + Z &.,m .r.,a(k - 1)

WHERE

A.-Am

Figure 2.1-2. Time-Domain Majorant Bound
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words, the first-order and higher order majorant bounds produce two nonnegative matrix functiops

m of time ((k) and R(k) such that

P.(k) << E'(k) << k(k).

Thus, the theory provides not only an upper bound on prediction error but also a measure of

- conservatism of the bound, i.e., k(k) - Ak(k).

To illustrate the capabilities of the time-domain majorants, we discuss an example given in [91.

This example, depicted in Figure 2.1-3, considers a tracking problem where a flexible spacecraft

with a rigidly mounted antenna must track a target through an encounter which takes 5.0 seconds

and covers 180 degrees. To illustrate the system analysis aspect of majorants, we suppose that the

tracker control loop was designed taking into account only the rigid body dynamics and that all

that is known about the dynamics is that there are modes above 20 Hz with specified bounds on

the elastic modal coefficients associated with the tracker sensor and thrusters. Given this rather

crude knowledge of the elastic modes, it is required to determine how much the actual closed-loop

tracking performance can deviate from the predictions of the nominal, rigid-body model. Thus, we

E illustrate not only the effects of uncertainty but also the utility of majorants in ascertaining the

impact of unmodeled dynamics. An additional objective is to indicate how majorant bounds can

be used to determine the quality of system identification necessary to support system certification

for flight.

* Details of the problem formulation and the analytical setup are given in [91]. Figures 2.1-4a,b

show final results for various cases in which the first-order majorant bound has been applied. In

each of these graphs, we show five curves. The central curve is the trajectory predicted by the

nominal model which includes only the rigid body dynamics; in addition we plot the nominal

trajectory plus or minus the upper bound Et(k) on the exact worst-case prediction error; finally, we

also show the nominal plus or minus the lower bound A(k) on the exact worst case error E*(k).

Note that despite the uncertain elastic mode effects, the actual system trajectory is certain to lie

between the outermost curves. Thus, majorants predict not merely a single trajectory, but ratler

a "tube" or band wherein the actual trajectory must lie. Furthermore, note that in all cases the

curves representing nominal ±!(k) and nominal ±t(k) are relatively close thereby indicating that

the upper bound on the prediction error entails very little conservatism. In particular, in cases 1,

3 and 4, the curve corresponding to upper and lower bounds are so close together that they cannot

be distinguished.
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* ENCOUNTER DURATION : 5.0
SECONDS Toru

* 180 DEGREES
USING THRUSTERS. - +

* DYNAMIC MODEL: RIGID BODY
MODES AND TWO ELASTIC
MODES AT 20.0 AND 40.0 HZ

.- THFU--

* CONTROLLER SAMPLE
RATE: 50.0 HZ

Figure 2.1-3. Spacecraft Tracking Example
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1.

484-'

CASE 1: fc=l.0 Hz, NOMINAL UNCERT. CASE 2: fc=5.O Hz, NOMINAL UNCERT.

Figure 2.1-4a. Time-Domain Majorant Bounds for Spacecraft Tracking Example
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CASE 3: fc=5.0 Hz, 0.1 X IJNCERT. CASE 4: fesS.0 Hz, 0.01 X UNCERT.

Figure 2.1-4b. Additional Results for Spacecraft Tracking Example
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Referring to Figure 2.1-4a, in particular, cases 1 and 2 show how increasing the controller

bandwidth (from 1.0 Hz to 5.0 Hz) reduces the nominal target tracking error but increases the

prediction error for a given amount of elastic mode uncertainty. This illustrates the use of ma-

jorant analysis to help determine controller bandwidths appropriate for the precision of modeling

information. Cases 2 through 4 show how decreasing the elastic mode uncertainty decreases the

*. performance bounds. In going from case 2 (Figure 2.1-4a) to case 4 (Figure 2.1-4b) the uncertainty

is reduced by an order of magnitude each time. This shows the capability of majorant analysis to

ascertain the precision of system identification that is required to attain a given level of guaranteed

performance. In the present example, it is see that a 20 multi-radian tracking specification would

require a system ID test that reduces model uncertainty by an order of magnitude.
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3.0 MEOP Design Synthesis Extensions to Decentralized/Hierarchical Control

3.1 Review of Centralized Theory

Optimal projection control-design theory has undergone considerable development over the past

several years. As shown in Figure 3.1-1, optimal projection theory now encompasses problems in

reduced-order, robust modeling, estimation and control in both continuous-time and discrete-time

settings. A comprehensive reference list appears in Section 5.0.

For control-design purposes optimal projection theory provides new machinery for synthesizing

multivariable feedback controllers. This machinery consists of a system of algebraic design equations

which characterize optimal feedback controllers while accounting for both controller order and

parameter uncertainties. The design equations consist of a system of two algebraic Riccati equations

and two algebraic Lyapunov equations coupled by both an oblique projection and uncertainty terms.

The Riccati equations are directly related to the pair of separated Riccati equations arising in LQG

theory. Indeed, when the controller order is set equal to the order of the plant and all uncertainties

are absent, then the design equations specialize immediately to the standard LQG equations.

3 3.2 Extensions to Decentralized Controllers

In keeping with the optimal projection philosophy, our approach to decentralized control design

is based upon fixed-structure optimization. That is, we assume that the structure of the controller

is determined by implementation constraints and/or subsystem analysis. Once the controller ar-U
chitecture is fixed, the feedback gains can be chosen to optimize the performance functional for

the closed-loop system. This approach can be used to determine preferable controller architec-

tures by varying the decentralized information structure and optimizing the performance of each

configuration.

The fixed structure approach is distinct from methods which are based upon subsystem de-

composition with centralized design procedures applied to the individual subsystems. For such

methods there remains the problem of determining conditions under which the reassembled closed-

loop system has acceptable behavior. An additional drawback of decomposition methods is that

the decentralized controller architecture specified by implementation constraints may be completely

unrelated to desirable architectures arising from dynamical considerations. For example, physical

implementation constraints may impose a particular decentralized architecture which does not cor-

respond to any discernible dynamical decomposition. Furthermore, subsystem decomposition as a
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I.

design tool may constrain the class of attainable designs at the expense of achievable performance.

UOf course, in many cases, such as the presence of high dimensionality, subsystem decomposition

is absolutely essential for making progress in designing decentralized controllers. However, only by

developing methods which avoid unnecessary constraints on the design space can the efficiency of

decomposition methods be assessed. Furthermore, methods which retain the full system dynamics

may provide a useful starting point for applying existing decomposition techniques as well as the

means for developing new methods.

Our overall approach is thus to regard the fixed-structure approach as complementary to sub-

system decomposition techniques. To this end, majorant robustness analysis has been developed

(see Section 2.0) to account for subsystem interactions arising, for example, from system uncertain-

ties. In addition, majorant robustness analysis is closely related to MEOP synthesis particularly

with regard to nondestabilizing uncertainties.

3.2.1 Decentralized Controll; Design for Static Controllers

We first consider the problem in which each subcontroller is assumed to be static, i.e., a

fixed gain multiplying the measurements. For realism, of course, only the physical measurements

are assumed to be available for feedback. Earlier versions of this problem were considered in

[3.1,3.21. The most general treatment of this problem obtained thus far can be found in [122.

The development in [122] includes, in particular, noisy and nonnoisy measurements, weighted and

* unweighted controls, and parameter uncertainties in the A, B, and C matrices. The optimality

conditions for this problem are given in the form of a pair of modified Riccati equations coupled by a

pair of oblique projections corresponding, respectively, to singular measurement noise and singular

control weighting. By utilizing a Lyapunov function to guarantee robust stability, these optimality

conditions serve as sufficient conditions for robust stability and performance over a specified range

of parametric uncertainty.

3.2.2 Decentralized/Hierarchical Controller Design for Dynamic Controllers

A more complex situation arises when the decentralized subcontrollers are allowed to be fixed-

order dynamic controllers. As an additional element of complexity, we assume the various decen-

tralized dynamic controllers are combined within a general multiechelon hierarchical control (MHC)

structure, illustrated conceptually in Figure 3.2.2-1 which is given in [3.4]. This is the most general

arrangement of decentralized control elements and consists of a number of subsystems situated in
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levels such that each one can coordinate lower-level units and be coordinated by a higher-level

one. Previous work, described above, which considers a purely decentralized (but nonhierarchical)

architecture, represents the special case of Figure 3.2.2-1 in which only the first hierarchical level

is present.

Specific realization of an MHC system within the context of linear dynamic compensation is

illustrated by the typical configuration shown in Figure 3.2.2-2a. Here compensators on the first

level interact directly with the large scale structure to be controlled. Compensators on higher

levels receive linear combinations (defined by the matrices of the direct sensor mesurements

(i . ) and the dynamic states (q . )) of the lower-level compensators as inputs and produce output
control signals (u)), which serve to coordinate and reconcile the (sometimes competing) actions

of the lower-level compensators. The disposition of control inputs, measurements and the matrices

Dl'), E(' defining each coordination level are defined by practical implementation and communica-

tion constraints. The important motivations for the MHC arrangement are to reduce processor cost

and complexity by breaking up the processing task into relatively small pieces and to decompose

the fast and slow control functions. Typically, the lower levels involve relatively simple compen-

sation but relatively high bandwidth, while the upper levels may utilize more nearly centralized

* and higher-order compensation with relatively low bandwidth. To reduce individual processing

burden, it is essential that for each subcontroller, the number of inputs (y ()), outputs (J. ) ) and

the dimension of the compensator be relatively small.

* Figure 3.2.2-2b defines the problem further by defining the generic arrangement of the jth

dynamic compensator on the ith hierarchical level. It is seen that each compensator is of the form

of an output feedback dynamic compensator whose dimension n( 'j ) is a fixed number determined by

implementation constraints. We address the quadratically optimal multiechelon hierarchical, fixed-
order control design problem, i.e., choose the gain matrices AM0 , ,( ,(') fori 1 1,M and

+r 0, ,i , , • 1

j = 1,..., Ni for all the dynamic compensators to minimize a steady-state quadratic performance

index subject to the selected MHC configuration and the compensator dimension constraints.

This optimization problem is nonconvex and displays multiple local extrema. Figure 3.2.2-3

illustrates the general difficulties and indicates our overall strategy for solving such nonconvex opti-

mization problems. The two-state strategy consists in (1) computing all extremalizing designs, i.e.,

control gains for which ag.f = - = = 0, by solving the first-order necessary conditions
(FONC) for the optimization problem and then (2) selecting the design which is determined to have
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1. Compute All Extremal Designs By
Solving The First-Order Necessary

Conditions for the Optimization
Problem.
* How many solutions are there?

* How can the solutions be computed?

2. For All Design in Step 1, Compute the
Performance J and Select the Design
with the Best Performance.

( I A (, - i) -(0'

ci = I,., cci

* Gradient Search Methods Can Converge To High-Cost Local Minima and Cannot Assure
Global Optimality

* Above Strategy Avoids These Pitfalls, but Feasibility Requires Satisfactory Answers to
Questions About Multiplicity of Solutions and Effective Solution Algorithms

Figure 3.2.2-3. Strategy for Solving the Optimal Multiechelon Hierarchical
Control Design Problem
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the smallest quadratic cost. Although this approach avoids the pitfalls of gradient search methods

* mand can guarantee global optimality, its feasibility requires that the number of FONC solutions be

relatively small (no more than one, ideally) and that there exist effective algorithms for computing

the FONC solutions.

Immediately below we discuss results on the derived forms of the FONC and then address

questions about multiplicity of solutions and effective solution algorithms in the remainder of this

section and in the following section.

First, the overall FONC comprise the set of all first-order necessary conditions for each sub-

controller individually. Figure 3.2.2-4 shows that the formulation of the FONC corresponding ,, 0

compensator (i,j) (jth controller on the ith hierarchical level) is exactly identical to the formulation

of first-order necessary conditions for a single centralized, fixed-order compensator for an "equiv-

alent plant" which comprises the dynamics of the original plant and all the other subcontrollers.

The necessary conditions for this "equivalent" centralized design problem are well known by virtue

of the earlier MEOP development. Thus, we immediately obtain for the (i,j)th compensator the

FONC shown in Figure 3.2.2-5a,b.

U Thus, the first-order necessary conditions of the quadratically optimal MHC design problem

decompose into sets of four nonlinear matrix equations (Figure 3.2.2-5b) involving one set of four

equations for each of the subcontrollers in the multiechelon hierarchical system. Each set of four

equations has a form identical to the four MEOP design equations for centralized design, namely,U
two modified Riccati and two modified Lyapunov equations, all coupled by an oblique projection

r(",') which characterizes the geometric structure of the (i,j)th fixed-order compensator. These

results directly generalize earlier results for the purely decentralized problem in 1761.

Clearly, the overall FONC will display multiple solutions (since this is the case for fixed-order,

centralized design) corresponding to the various local extrema. The decomposition of the FONC

noted above shows that the key to establishing the number of solutions is to determine the number

of solutions to the MEOP design equations for centralized fixed-order compensation. Specifically, the

next section discusses new results which establish a generic upper bound on the number of solutions

to the MEOP centralized control design equations. Using these results, one can determine an upper

bound 04) on the number of solutions to the matrix equations (Figure 3.2.2-5b) corresponding to

the (i,j)th compensator, where (' ) is independent of the other subcontrollers. Then, considering
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all the first order necessary conditions, it follows that

n Number of admissible solutions M ,J

to the FONC for the < 1 M(id)
i=1 i---

MHC design problem

We shall see that in many practical situations the above number is quite small (indeed, unity in

most instances) so that the solution strategy of Figure 3.2.2-3 is feasible and can effectively produce

the globally optimal solution.

Also, the structure of the first-order necessary conditions for the MHC problem suggests a

solution algorithm consisting of the sequential solution of centralized, fixed-order design equations

for each subcontroller in turn. We have developed an effective MHC solution algorithm by first

constructing efficient homotopy solution algorithms for the centralized design problem and then

applying the results to the more general MHC problem. These matters are discussed in the next

section.
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4.0 Analysis and Solution of the MEOP Multiechelon Hierarchical Control
(MEOP-MHC) Design Equations

In Section 3.2.2, we described (see Figure 3.2.2-3) how the quadratically optimal, fixed-order

multiechelon hierarchical control problem can be reduced to (1) determination of all admissible

solutions of the MEOP-MHC design equations (Figure 3.2.2-5b) and (2) selection of the solution

i for which the quadratic cost is minimal. As noted, the feasibility of this approach depends on satis-

factory answers to questions concerning multiplicity of solutions as well as the existence of effective

solution alogrithms. However, from the structure of the MEOP-MHC design equations noted above

we have discovered that optimal MHC dynamic compensator design can be viewed as a collection of

subcontroller designs obtained for an augmented system. Essentially, each subcontroller is viewed

as a reduced-order controller for the plant augmented by all other subcontrollers. This problem is

thus a direct application of centralized MEOP design theory.

In Section 4.1 we review results for the MEOP centralized design theory wherein effective

solution algorithms are developed and then show, in Section 4.2, how these centralized design

results are applied to resolve residual issues in the MHC design problem.

4.1 Homotopic Continuation and Degree Theory for
Optimal Fixed-Order, Centralized Control

Here we return to consideration of the optimal fixed-order dynamic compensator design prob-

* lem, approached via solution of the MEOP centralized design equations. Note that this is also

a nonconvex optimization problem with multiple extrema. Thus the number of solutions, their

stability properties, and determination of the global minimum are important issues. It seems clear

that any attempt to address these issues must utilize mathematical methods which are global in

nature. To this end, we have applied topological degree theory and associated homotopy methods

(see (4.1-4.31) to analyze the solutions of the MEOP centralized design equations and to construct

convergent solution algorithms. In essence, a homotopic continuation method involves first solving

an "easy" problem, then continuously deforming the easy problem into the original problem, and

finally following the path of solutions as the easy problem is deformed into the original problem.

This is shown conceptually in Figure 4.1-1 where the dashed lines also indicate several pathologies

that can occur. Here t is the continuation parameter, t = 0 represents the easy problem, and t = 1

corresponds to the original problem to be solved.

In [63,68], Richter formulated a homotopy method and then applied topological degree theory
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to develop a homotopy method for solving the MEOP equations for which the dashed lines in

3 Figure 4.1-1 cannot occur. That is, the only solutions to the MEOP design equations at t = 0 (or

for 0 < t < 1) are those which are continuously derived from the solutions at t = 0. Furthermore,

the MEOP equations possess at most

(min(n rn, t)'- n , <n in(nmI),\ n, - n, )I

1, otherwise,

stabilizing solutions where ( is the standard combinatoric notation, n,, denotes the dimension of

the unstable subspace of the plant, n is the plant dimension, m the number of control inputs, f

the number of sensor outputs, and n, is the desired dimension of the compensator. Moreover, each

such solution is reachable via a homotopic path. Finally, if the plant is stabilizable by means of an

ncth-order dynamic compensator, then there exists at least one solution to the design equations.

Note that if n, is larger than the number of inputs or outputs, then there is only one solution

to the MEOP equations and this solution corresponds to the global minimum of the quadratic

performance index. Also note that Richter's homotopy algorithm permits the a priori selection

of a starting solution (all starting solutions being known in closed form) leading to an admissible,

final solution. Hence, even when n, < min(n,m,t), one can compute all solutions, then pick the

solution corresponding to the smallest quadratic cost.

An additional benefit of the homotopy algorithm is the ability to exploit the structure of the

* design equations to an even greater extent than the iterative algorithm. Specifically, Richter has

shown that the computational burden using the homotopy methods involves solving four equations

of order n, x n. Hence, the computational requirements decrease as n, decreases. This is, of course,

quite pleasing since low-order controllers ought to be easier to design than high-order controllers.

For MHC design this property is particularly advantageous since it will generally be true that

n. << fi where i is the plant dimension augmented by all other subcontrollers.

Since the computational burden of the iterative algorithm tends to increase as n,, decreases, the

advantages of the homotopy algorithm over previously developed iterative algorithms are obvious.

Computational savings have been at least an order of magnitude and final convergence has been

greatly improved. Moreover, the example considered in [4.4] and [94) was reconsidered using the

homotopy algorithm in 163,68). The main result was the ability to produce controllers as low

as second order at control authorities which were three orders of magnitude beyond the cases

considered in [4.4] and [94]. In each case the performance of the reduced-order controller was
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within 20 percent of the full-order design.

In summary, the homotopy and degree theory results render feasible the solution strategy for

optimal fixed-order compensation shown in Figure 4.1-2. This directly parallels Figure 3.2.2-3.

Here, we compute all extremal designs by solving the FONC in the form of the MEOP design

equations. Degree theory shows that the number of solutions is typically small and homotopy

algorithms provide efficient methods for computing the solutions. Thus, effective methods exist to

carry out step 1 in Figure 4.1-2. Step 2 is relatively straightforward and its completion yields the

globally optimal solution to the nonconvex optimization problem.

It is evident that the homotopy results for fixed-order centralized control represent a powerful

vehicle for successfully addressing the optimal, fixed-order multiechelon hierarchical control prob-

lem. The manner in which these results have been adapted to the MHC problem is described in

the next section.

4.2 Application of Homotopy and Degree Theory to
Optimal Multiechelon Hierarchical Control Design

We now return to the questions raised in connection with the strategy for solving the optimal

MHC design problem depicted in Figure 3.2.2-3. We first examine how many solutions exist to the

MEOP/MHC design equations shown in Figure 3.2.2-5b.

Clearly, the first-order necessary conditions for the (i,j)th subcontrollers are identical to the

MEOP design equations for a single fixed-order controller in the presence of an augmented plant

consisting of the original plant and all other subcontrollers. Thus the degree theory results on

the centralized design problem can be applied to this case. For the (i,j)th sucontroller, let m ( ,' )

denote the dimension of u .) and P(j) the dimension ofy (O (see Figure 3.2.2-2b). To simplify

this outline of results, we assume an open-loop stable plant and suppose that the dimension of

the augmented "equivalent plant" for the (i,j)th compensator is larger than either m(id) or ( ,j).

Then under these rather typical conditions, the degree theory results described in the last section

can be utilized to show:

Number of admissible solutions

to the MEOP-MHC design M N.< J1[ 11-[ (4.21)
equations (equivalent to the i=1 n=1

FONC for the MHC design problem)
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,,.,i,~.C. Lh)~. ) C,) < min~m(, ),((J))

1, otherwise,

When it is recalled that the design of simple subcontrollers requiring little on-line computation

necessitates a decentralized control structure in which the number of subcontrollers inputs and

outputs is small, it is seen that Oj.€I,) is typically a small number. Also, if either m(' , ) or O(',i) is

small (say < 4) for all i and j then one can choose

,') min(m("'),0,')) (4.2-2)

and still have compensators of acceptably small dimension.

If the above choices can be made for the dimensions of all the subcontrollers, then R/(i,') is

unity for all i,j and the MEOP-MHC design equations have, at most, one solution. Moreover, one

solution always exists since for a stable plant, a stabilizing MHC design exists and there is at least

one extremalizing design. Since the MEOP-MHC equations are the first-order necessary conditions,

they have at least one solution under a stabilizability assumption. Thus, under the conditions

postulated, the MEOP-MHC design equations have a unique solution and this corresponds to the

global minimum of the performance index.

The above results render step 1 in Figure 3.2.2-3 feasible. Even if .C'') > 1, practical con-

straints on m ( ," and 0(4,' will tend to keep the total number of admissible solutions to within a

manageable level.

Next, retaining assumption (4.2-2) we consider the application of the centralized design homo-

topy algorithm discussed in the previous section to MHC design. The structure of the MEOP-MHC

equations immediately suggests sequential design as in [4.5-4.7] whereby the equivalent centralized

design problem is solved for each individual subcontroller in turn. Specifically, let each (i,j) corre-

spond, one to one, to an integer k, where k = 1,...,NT, where

M

NT N

i=1

is the total number of subcontrollers. With this re-indexing of the subcontrollers, consider the

following algorithm:

Start: Choose any set of stabilizing gains (in the present case, it suffices to choose A (' -

B() -di) = 0, for all (i,j)) and let k = 1 and L = 1.
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L.A Apply the hornotopy algorithm to solve the MEOP-MHC equations for the kth subcon-

g troller, i.e., solve the equations shown in Figure 3.2.2-5b (with (4.4-2), the solution is

unique).

B Update the gains for the kth subcontroller using the expressions in Figure 3.2.2-5a and

incorporate these within the closed-loop system model.
Iff

C Compute the overall closed-loop cost J.

2. If k < NT, increment k by unity and go to step 1. Otherwise, increment L by unity and

go to 1.

The above establishes an infinite sequence of redesigns and a corresponding sequence of closed-

loop costs {J(k, L); k = 1,...NNT, L = 1,...,oo}. It is easily seen that J(k, L) is monotonically

nonincreasing. This occurs because step L.A is the solution of a centralized, fixed order optimization

problem and the value of J cannot increase following a redesign. Since (J(k, L)) is a monotonic

nonincreasing sequence which is also inherently nonnegative, it converges to a nonnegative value.

This implies also that the sequence of subcontroller gains converge and, by virtue of step 1.A,

the values to which they converge satisfy the full MEOP-MHC design equations. This solution

can be shown to be unique and corresponds to the globally optimal design. Thus, under the

conditions postulated, the above general algorithm involving sequential redesign and directly using

the homotopy algorithm for centralized MEOP design is seen to converge monotonically to the

* globally optimal design. The questions raised in Figure 3.2.2-3 are answered quite satisfactorily

and the overall solution (which now parallels Figure 4.1-2 for centralized design) is seen to be

practically feasible and (thanks to the homotopy algorithm) effective and efficient.

The above results also follow for open-loop unstable systems if, in the above algorithm, one

starts by first designing the highest level controller (the supremal coordinator) to stabilize the

system. The general case n0 , < min(m( i ) t(',j)) has not been extensively investigated and must

remain the object of further research.

Also, note that the sequential redesign algorithm does not presuppose any particular order in

which the subcontroller redesigns are to be carried out. There are many possibilities. One could,

for example cycle through all subcontrollers in some order within a given iteration. Alternatively,

in what might be called the 'echelon scheme," one might iterate only the compensator designs in

a given hierarchical level (keeping designs in other levels fixed) until there is convergence for that
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level and then move on to another hierarchical level. How each such ordering and iteration scheme

affects the rate of convergence is just beginning to be appreciated. Only limited design experience

has been acquired to-date and much remains to be done to establish the ordering of the sequential

redesign steps which will, for any given problem, promote the most rapid convergence.

4.3 Decentralized/Hierarchical Design Examples

To illustrate the ideas developed in the previous sections, we have carried out detailed numerical

calculations for two design problems. The first example involves a pair of interconnected flexible

beams while the second involves a deployable truss structure. For each problem a decentralized

controller was designed using the sequential design algorithm developed in the previous sections.

Although only single echelon designs were considered, the extension to multiechelon controllers is

straightforward.

The first example involves a pair of simply supported Euler-Bernoulli flexible beams intercon-

nected by a spring and constrained to vibrate in one spatial dimension (see Figure 4.3-1 and [76]).

Each beam possesses one rate sensor and one force actuator which are noncolocated. No special

requirements were imposed on the locations of the sensors, actuators, and spring attachment points

except to avoid nodes of the beam mode shapes. Two vibrational modes were retained in each beam

so that the interconnected system possesses eight poles. The interconnection spring was chosen to

be sufficiently stiff so that high authority local decentralized designs designed with the spring absent

suffered significant degradation when the spring was reinserted. To obtain high authority designs

we chose quadratic weights so that the closed-loop performance of the centralized controller yielded

an order of magnitude performance improvement over the open-loop system.

To design a decentralized controller we began by designing local 4th-order decentralized con-

trollers for each beam individually. Reinsertion of the spring resulted (as noted above) in significant

performance degradation. Each subcontroller was then redesigned alternatively yielding the results

given in the following table:
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Figure 4.3-1. Interconnected Beam Example for Decentralized Control
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Design Cost

Open loop 163.5

Centralized LQG n, = 8 19.99

Suboptimal decentralized nC nc = 4 59.43

Redesign subcontroller 2 28.19

Redesigi. subcr 'oller 1 23.29

Redesign subcontroller 2 23.C4

Redesign subcontroller 1 22.25

Redesign subcontroller 2 21.94

Redesign subcontroller 1 21.86

Redesign subcontroller 2 21.81

Redesign subcontroller 1 21.79

It is immediately evident that each redesign step resulted in improved performance of the

decentralized closed-loop system. As noted previously, this monotonic improvement is a direct

result of the fact that at each redesign stage a suboptimal subcontroller is being replaced by a

subcontroller which is optimal with respect to the augmented plant consisting of the actual plant

and remaining subcontroller. Finally, note that since each subcontroller involves one sensor and

one actuator, there exists at most one solution to the design equations at each redesign step. Thus

the sequence converges to the global minimum of the decentralized design problem.

As a second and more realistic example we consider the decentralized control of a deployable

truss structure (Figure 4.3-2). Unlike the previous example this structure does not involve phys-

ically identifiable subsystems. Rather, the motivation for a decentralized architecture arises from

the desire to minimize real-time communication among sensors and actuators located at differ-

ent points (bays) along the structure. Hence we consider a decentralized feedback architecture in

which each subcontroller involves only sensors and actuators located within a single bay. Although

subcontrollers do not communicate with one another by exchanging data, they do interact via the

dynamics of the structure. Modal data for the first 10 modes of the structure are given in Figure

4.3-3 while mode shapes are shown in Figures 4.3-4, 4.3-5 and 4.3-6.

In designing a decentralized feedback architecture we considered control instrumentation at

bays 23, 46 and 54 (tip). Specifically, for control we considered rate sensors and force actuators

at bays 28, 46 and 54 ,-long the z and y axes and at bay 54 about the z axis. Furthermore,
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Mode Frequency Modal Damping Mode Shape
Mode V Description

1 0.179 0.002 1st z-z Bending

2 0.236 0.002 1st y-z Bending

3 1.270 0.003 2nd y-z Bending

4 1.320 0.003 2nd z-z Bending

5 1.460 0.005 1st Torsion

6 3.640 0.005 3rd y-z Bending

7 3.800 0.005 3rd z-z Bending

8 5.180 0.005 2nd Torsion

9 6.200 0.005 4th i,-z Bending

10 6.410 0.005 4th x-z Bending

Figure 4.3-3. Modal Data for the Deployable Truss Structure
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Figure 4.3-4. Deployable Truss Structure Mode Shapes
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Figure 4.3-5. Deployable T!russ Structure Mode Shapes (cont'd)
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disturbances were assumed to be generated by actuators at bay 10 (along the x and y axes), bay

28 (about the z axis), and bay 54 (along the x and y axes and about the z axis). As a measure of

performance we considered the motion of the tip along the z and y axes and about the x, y and

z axes. Sensor noise levels and control signal weighting matrices were chosen so that a centralized

LQG controller reduced mean-squared variation to 1% of their open-loop levels. Note that such an

LQG controller is of 20th order and involves feedback loops between all sensors and actuators.

To produce a decentralized controller we constrained the architecture to involve three subcon-

trollers involving sensors and actuators at bays 28, 46 and 54 (see Figure 4-3.7). Each subcontroller

was constrained to be a 4th-order compensator. The sequence of evaluations and refinements

is shown in Figure 4.3-8. The final controller consisting of three 4th-order local subcontrollers

represented only an 8% cost degradation compared to the significantly more complex 20th-order

centralized LQG design.

4.4 References

[4.1] S. Richter and R. DeCarlo, "Continuation Methods: Theory and Applications," IEEE Trans.
Autom. Contr., Vol. 28, pp. 660-665, 1983.

[4.2] S. Richter and R. DeCarlo, "A Homotopy Method for Eigenvalue Assignment Using Decentral-
ized State Feedback," IEEE Trans. Autom. Contr., Vol. AC-29, pp. 148-155, 1984.

[4.3] S. Lefebvre, S. Richter and R. DeCarlo, "A Continuation Algorithm for Eigenvalue Assignment
by Decentralized Constant-Output Feedback," Int. J. Contr., Vol. 41, pp. 1273-1292, 1985.

[4.4] Y. Liu and B. D. 0. Anderson, "Controller Reduction Via Stable Factorization and Balancing,"
Int. J. Contr., Vol. 44, No. 2, pp. 507-531, 1986.

[4.5] E. J. Davison and W. Gesing, "Sequential Stability and Optimization of Large Scale Decen-
tralized Systems," Automatica, Vol. 15, pp. 307-324, 1979.

[4.61 Z. Uskokovic and J. Medanic, "Sequential Design of Decentralized Low-Order Dynamic Regu-
lators," Proc. IEEE Conf. Dec. Contr., pp. 387-842, Fort Lauderdale, FL, December 1985.

[4.7] N. Viswanadham and J. H. Taylor, "Sequential Design of Decentralized Control Systems," Int.
J. Contr., Vol. 47, pp. 257-279, 1988.

I

4--16

,... ,, m ,,,, n ,,,. ,-. M S 'n N II I u
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Eigure 4.3-7. Control System Instrumentation for the
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Procedure State Cost Control Cost Total

Evaluate Open Loop Cost 429 0 429

Design LQG Centralized Controller (n = 20) 2.97 1.28 4.25

Design LQG Single Channel Controller (n, = 20)
with Bay 54 Instrumentation Only 3.08 1.42 4.50

(I) Design OP Single Channel Controller (n, = 4)
with Bay 54 Instrumentation Only 5.94 1.34 7.28

Design LQG Single Channel Controller (n = 20)
with Bay 46 Instrumentation Only 10.2 1.83 12.0

(II) Design OP Single Channel Controller (n.. = 4)
with Bay 46 Instrumentation Only 10.2 11.97 12.2

Design LQG Single Channel Controller (n, = 20)
with Bay 28 Instrumentation Only 23.2 6.26 29.4

(III) Design OP Single Channel Controller (n. = 20)
with Bay 28 Instrumentation Only 23.3 7.04 30.3

Evaluate Performance of I + II + III N/A N/A 10.9

Evaluate Performance of I + II N/A N/A 7.72

Redesign II (I + II') 6.86 1.80 7.04

Redesign I (I + IIP) 3.42 1.36 4.78

Evaluate (I + II' + III) N/A N/A 7.97

Redesign III (I + II' + III) 4.63 .034 4.66

Redesign I (I" + II + IIY) 3.26 1.31 4.57

Figure 4.3-8. Sequential Decentralized Design Procedure for
Deployable Truss Structure
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Abstract

OPUS (Optimal Projection for Uncertain Systems) provides new machinery for
designing active controllers for suppressing vibration in flexible structures. The
purpose of this paper is to review this machinery and demonstrate its practical value
in addressing the structural control problem.

Ca -

1. Introduction

For many years it has been widely recognized that the desire to orbit

large, lightweight space structures possessing high-performance capabilities would

3 require active feedback control techniques. More generally, the need for such

techniques may arise due to the combinations of either 1) moderate performance

requirements for highly flexible structures with low-frequency modes or 2) stringent

performance requirements for semi-rigid structures with relatively high-frequency

modes (Figure 1). Applications include pointing. slewing. and aperture shape control

for optical and RF systems.

UCONTROLLER AUTHORITY AND OR
RESPONSE RANGE OF INTEREST

MODS

Small" structures
" Older generation of spacecratt" Most civil engineering structures

(from strength/stalic loading
point of view)

FREOUENCY

Large structures
a Highly flexible spacecraft.

tall buildings rapid transit

structures, etc

And/or
ii Stringent pointing accuracy

and optical quality
requirements
Noise abatement (acousticall
structural inleraction)

Figure 1. The Need for Active Structural Control Arises From
Stringent Performance Requirements or Low-Frequency Modes
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Figure 2. Vibration Control Systems Utilize Sensors. Processors and Actuators
to Suppress Disturbances

The problem of active vibration suppression (Figure 2) entails the

following considerations:

1. Multiple. highly coupled feedback loops. The potentially large number of

sensors and actuators leads to a fully coupled mu.ti-input. multi-output

feedback control system.

2. Limited actuator power. The control authority available from on-board

actuators is limited by weight. size, cost and power considerations.

3. High-dimensional models. Large structures subjected to broadband

disturbances are typically represented by, high-order finite element models.

4. Limited processor capacity. Reliability and cost considerations limit tl e

processor capacity available for on-board real-time implementation of the

control system.

5. Highly uncertain models with structured uncertainty. Finite element models

often exhibit significant error particularly as modal frequency increases.

Although modal testing and related identification methods may be used to

improve modeling accuracy, residual uncertainty always remains and

unpredictable on-orbit changes due to eping. thermal effects. etc.. must be

tolerated.
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6. Stringent performance requirements. Since active space structure control

is most relevant in precision applications, it can readily be expected that

performance specifications will be particularly stringent.

I

7. Design efficiency. Because of implementation complexity due to the

presence of multiple loops, high dimension, and high levels of uncertainty.

the control design approach should efficiently utilize both synthesis and

analysis techniques (Figure 3).

SYNTHESIS

ANALYSIS

Figure 3. Control-System Design Must Efficiently Utilize Both
Synthesis and Analysis Techniques

These considerations pose a considerable challenge to the state-of-the-art

in control-design methodologies. For example, the presence of multiple, coupled

feedback paths essentially precludes the effectiveness of single-loop design

techniques. The sheer number of loops, their interaction, and the need to address a

host of other issues render such methods inefficient and unwieldy.

In addition to the presence of multiple loops, the high dimensionality v,

dynamic models places a severe burden on control-design methodologies. For example.

although LQG (linear-quadratic-Gaussian) design is applicable to multi-loop problems.

such controllers are of the same order as the structural model (Figures 4 and 5).

Thus LQG and similar high-order controllers can be expected to place an unacceptable

computational burden on the real-time processing capability. Hence it is not

surprising that a variety of techniques have been proposed to reduce the order of LQC

controllers. A comparison of several such methods is given in Il.

All of the above difficulties are severely exacerbated by the fact that the

dynamic (i.e.. finite element) model upon which the control design is predicated may

be highly inaccurate in spite of extensive modal identification. Hence, applicable

control-design methodologies must account for modeling uncertainties by providing

robust (i.e., insensitive) controllers. Furthermore, because of stringent
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U = CCX c

FULL-ORDER CONTROLLER xceRn

STEADY-STATE PERFORMANCE CRITERION

J(Ac,Bc,Cc) = lim E[xTRlx + uTR 2 u]

Figure 4. LQG Theory Addresses the Problem of Designing a

Quadratically Optimal, Full-Order Dynamic Compensator

4

FULL-ORDER CONTROLLER GAINS
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Figure 5. The Optimal Full-Order (LQG) Controller Is Determined by a
Pair of Separated Riccati Equations
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performance requirements, robust control design must avoid conservatism with respect

to modeling uncertainty which may unnecessarily degrade performance. A salient

example of conservatism is illustrated in Figure 6. If uncertainty in the modal

AM frequency is complexified in a transfer function setting, then the resulting pole

location uncertainty has the form of a disk. This disk. however. intersects the

right half plane in violation of energy dissipation. Hence one source of

conservatism is the inability to differentiate between physically distinct parameters

such as modal frequency and modal damping.

Im A

RIGHT-HALF-PLANE
- -- N POLES ARE PHYSICALLY

S 7 iIMPOSSIBLE

CR A

mehd whic Aoiaetepioohyo PSdvlpet

Asthoughelassic.yali metodael cnabernsformvibratio coatntoay)d

domain mthod arquny timedomi tiechniqus. Aigifcmrn ivferevsise. osucvmethod

attempting to represent modeling errors. Specifically. model-error characterization

of a particular type, which is natural and tractable in one doDmain. may become

extremely cumbersome when transformed into the cther domain. For example, consider a

state space model with parameter uncertainties arising in the system matrices

(A.B.C). Upon transforming t" a frequency domain model C(s) = C(sI-A)_ B the

parametric uncertainties may perturb the transfer function coeffic'ents in a

4 ::: P : .
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complicated manner. A more natural measure of uncertainty for transfer functions has

been developed in [2] where system uncertainty in the frequency domain is modeled by

means of normed neighborhoods in the H-infinity topology. There are limitations with

this approach, however, in designing controllers for vibration suppression. For

example, as shown in Figure 6. complexification of real-parameter uncertainties such

as modal frequencies may yield unnecessary conservatism, while norm bounds often fail

to preserve the physical structure of parameter variations. A case in point is the

lightly damped oscillator. As shown in (A421. norm bounds predi,r stability over a

frequency range on the order of the damping while in fact the oscillator is

unconditionally stable. Furthermore, with regard to processor throughput tradeoffs,

modern frequency-domain methods typically yield high-order controllers.

Although LQC addresses performance/actuator and performance/sensor

tradeoffs in a multi-loop setting, it fails to incorporate modeling uncertainty.

Thus it is not surprising, as shown in (3]. that LQG designs fail to possess

guaranteed gain margin. Since LQG designs lack such margins, attempts have been made

to apply frequency-domain techniques to improve their characteristics. One such

method, known as LQG/LTR ([4.5]) seeks to recover the gain margin of full-state-

feedback controllers. Specifically. full-state-feedback LQR controllers are

guaranteed to remain stable in the face of perturbations of the input matrix B of the

form aB where e[1l/2.es). As shown in 16.7]. however, the full-state-feedback gain

margin fails to provide robustness with respect to perturbations which are not of

this form. For instance, the example given in [6] with B = (0 1] can be

destabilized for suitable performance weightings with perturbation B(C) = (C 1 T for

arbitrarily small E in spite of the 6 dE margin. Furthermore. since LQG/LT loop

shaping is based upon singular value norm bounds, treatment of physically meaningful

real parameter variations may lead to unnecessary conservatism. Several approaches

have been proposed for circumventing these difficulties (see. e.g.. [8]).

The importance of addressing the problem of structured uncertainty in

finite element models cannot be overemphasized. Structural characteristics such as

modal frequencies, damping ratios, and mode shapes appear explicitly in (A.B.C)

state-apace models ma physically meaningful parameters. Uncertainty in mode shapes,

for example. which appear as columns of the B matrix. cannot In general be expected

to be of a multiplicative form in accordance with traditional gain-margin

specifications. This is precisely the problem illustrated by the example of (61

discussed above. Furthermore. uncertainties in modal frequencies and damping ratios

must be carefully differentiated since, roughly speaking, modal frequency

uncertainties affect only the imaginary part of the pole location while damping

uncertainty affects the real part. Although these and related observations
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concerning uncertainty in the dynamic characteristics of lightly damped structures

may be self evident, they have remained largely unexploited in standard control-

design methods.

2. OPUS: New Machinery for Control-System Design

In view of the ability of LQG theory to synthesize dynamic controllers for

multi-input, multi-output controllers, it is not surprising that LQG forms the basis

for a variety of structural control methods. However, as discussed previously. LQC

lacks the ability to address performance/processor and performance/robustness

tradeoffs. This situation has thus motivated the development of numerous variants of

LQG which entail additional pro.edures which attempt to remedy these defects. OPUS.

however, is distinctly different. Rather than append additional procedures to LQG

( design. OPUS extends LQG theory itself by generalizing the basic underlying

machinery.

As shown in Figure 5. the basic machinery of LQG consists of a pair of

separated Riccati equations whose solutions serve to directly and explicitly

synthesize the gains of an optimal dynamic compensator. The contribution of OPUS is

3 to directly expand this machinery. The overall approach is illustrated in Figure 7

which portrays two distinct generalizations of the basic LQG machinery. As figure 7

illustrates, these generalizations can be developed individually when either low-

order or robust controllers are desired. The appealing aspect of OPUS. however, is

the ability to extend LQC to address both problems simultaneously in a unified

manner.U

LOG
2 RICCATI

ISEPARATED)

LOW-ORDER PARAMETERCOSRiNT LINMTECONSTRAI/r -NCERTAINTIES

OP us
2 RICCATI *2 LYAPIJNOV 2 RICCATI - 2 LVAPUNOV

C! SB OPTIMAL PROJECTION) COUPLD BY UNCERTAINTY TERMS)

PARAMETE OW-ORDER
UNCERTAINTIES CONSTRAINTOPUS

2 N|CCATI - 2 LYAlPUJNOV

PRlOJECTION(COUPLED BY OPTIMA L :ROE a /ON 0

AND UNCERTAINTY TERMS)

Figure 7. The Standard LQG Result Is Generalized by Both the Fixed-Order
Constraint and odelinL of Parameter Uncertainties
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In the following sections the generalizations depicted in Figure 7 will be

reviewed following the left branch. That is. the optimal projection approach to

reduced-order controller design will first be discussed in Section 3 without

introducing plant uncertainties. In Section 4 the reduced-order constraint will be

retained while considering, in addition. uncertainties in the system model. In each

case the discussion will focus on the underlying ideas with a minimum of technical

detail.

Clearly. in order for a novel design methodology to be of practical value

it must be computationally tractable. Ilence Section 5 will present an overview of

the current state of algorithm development for solvin, the OPUS design equations.

Finally. Section 6 will briefly summarize further OPUS generalizations of LQG theory

which are relevant to structural control.

3. Extensions of LQG to Reduced-Order Dynamic Compensation

The simplest, most direct way to obtain optimal reduced-order controllers

is to redevelop the standard LQG result in the presence of a constraint on controller

dimension (Figure 8). The mathematical technique required to do this is remarkably

straightforward. Specifically. the structure and order of the controller are fixed

and the performance is optimized with respect to the controller gains. The resultinp

necessary conditions obtained using Lagrange multipliers thus characterize the

optimal gains.

HIGH-ORDER PLANT xR n

i = Ax + BU + w 1

umY = Cx+w2 VR

4C 2 Acxc * BC y

U = CcXc

LOW-ORDER CONTROLLER xcCR 
nc

STEADY-STATE PERFORMANCE CRITERION

J(Ac,BcCc) = lrn E[xTR1 x + UTR 2 u]

Figure 8. In Accordance With On-Board Processor Requirements, a Reduced-Order
Constraint Is Imposed on the Dimension of the Dynamic Compensator
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This parameter optimization approach as such is not new and was

investigated extensively in the 1970's. Typically. however, the optimality

conditions were found to be complex and unwieldy while offering little insight and

requiring gradient search methods for numerical solution.

One curious aspect of the parameter optimization literature is that no

attempt was made to actually use this direct method to rederive the LOC result

itself. Such an exercise. it may be surmised, might reveal hidden structure within

the optimality conditions which would shed light on the reduced-order case. Indeed.

such an approach led to the realization that an oblique projection (idempotent

matrix) is the key to unlocking the unwieldy optimality conditions (EA7.A171).

Although the result is mathematically straightforward, it is by no means obvious

since in the full-order (LOG) case the projection is the identity and hence not

readily apparent.

By exploiting the presence of the projection, the necessary conditions can

be transformed into a coupled system of four algebraic matrix equations consisting of

a pair of modified Riccati equations and a pair of modified Lyapunov equations

(Figure 9). The coupling is via the oblique projection 7 which appears in all four

equations and which is determined by the solutions Q and P of the modified Lyapunov

equations. A satisfying feature of the optimality conditions is that in the full-

order case the projection becomes the identity, the modified Lyapunov equations drop

out. and. since r, = 0. the modified Riccati equations specialize to the usual

separated Riccati equations of LQG theory. Since. furthermore. G = r = nxn identity.
the standard LQG gain expressions are recovered.

UI
Although the modified Riccati equations specialize to the standard Riccati

equations in the full-order case. the modified Lyapunov equations have no counterpart

in the standard theory. The role of these equations can be understood by considering

the problem of optimal model reduction alone. For this problem the optimal reduced-

order model is characterized by a pair of coupled modified Lyapunov equations

(see [A221). Thus the modified Lyapunov equations arising in the reduced-order

dynamic-compensation problem are directly analogous to the modified Lyapunov

equations arising in model reduction alone. The modified Lyapunov equations arising

in the control problem, however, are intimately coupled with the modified Riccati

equations. Hence it cannot be expected that reduced-order control-design techniques

based upon LQG will generally yield optimal fixed-order controllers (Figure 10). It

is interesting to note that several such methods discussed in [1] are based upon

balancing which was shown in [A22] to be suboptimal with respect to the quadratic

(least squares) optimality criterion.
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Figure 9. The Optimal Reduced-Order Compensator Is Determined by a
Pair of Modified Riccati Equations and a Pair of Modified Lyapunov Equations

Coupled by the Oblique Projectionir
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Figure 10. The Optimal Projection Equations Provide a Direct Path to
Opt imal Reduced-Order Dynamic Compensators
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In summary, the optimal projection equations for reduced-order dynamic

compensation comprise a direct extension of the basic LQG machinery to the reduced-

order control problem. The design equations, which reduce to the standard LQC result

in the full-order case, provide direct synthesis of optimal reduced-order controllers

in accordance with implementation constraints.

4. Extensions of LQG to Uncertain Modeling

Two fundamental sources of error in modeling flexible structures are

truncated modes and parameter uncertainties. Since the optimal projection approach

permits the utilization of the full dynamics model, modal truncation can be largely

avoided. There renains, however, a tendency to truncate poorly known modes and thus

it is essential to incorporate a model of parameter uncertainty in both well-known

and poorly known components of the system. Hence the problem formulation of Figure 8

is now generalized in Figure 11 to include uncertain parameters o*. appearing in the

A. B and C matrices. The parameter ta. is assumed to lie within the interval 1-i ]

In accordance with identification accuracy. Clearly, when uncertainty is absent.

i.e.. when Ai. Bi . Ci.= 0. the reduced-order design problem of Figure 8 is recovered.

HIGH-ORDER, UNCERTAIN PLANT
a Stochastic disturbance model
a Deterministic parameter uncertainty model

ja il -5 61 _ q

X (A+!' 1 Al)x + (B+oiI)U + w 1

y = (C+olClx + w2

u y

------ F.-----

= , CxcI 'Ry,

LOW-ORDER CONTROLLER
a Dynamic (strictly proper)
8 Static (constant gain)
a Dynamic/static (nonstricfly proper)

Figure 11. Robust Optimal Projection Design Is Based Upon a
Hybrid Uncertainty Model Involving a Deterministic Parameter Uncertainty Model

and a Stochastic Disturbance Model
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A salient feature of the design model is that uncertainty is modeled in tvo
distinctly different ways. External uncertainty appearing as additive white noise is

modeled stochastically. Such a model appears appropriate for disturbances such as

coolant flow for which only power spectral data are available. On the other hand.
internal uncertainty appearing as parameter variations is modeled determlnistically.

Such a model appears appropriate for uncertainty arising from directly measurable

quartities ruch as mass and stiffness. Thus the overall uncertainty model is hybrid

in the sense that it utilizes both deterministic and stochastic eharecterizations of

uncertainty.

A natural performance measure which accounts for both types of uncertainty
characterization involves the usual LQG quadratic criterion averaged over the

disturbance statistics and then maximized over the uncertain parameters (Figure 12).

Hence this performance measure incorporates on the average and worst case aspects in

accordance with physical considerations.

PERFORMANCE CRITERION

J(Ac,BcCc) sup lir sup E [xTR1 x + 2xTR1 2u + uTR2u]

Worst- Steady- Average Quadratic
Case State

Over Over
Parameters Disturbance

Statistics

ROBUST PERFORMANCE PROBLEM
Minimize J(AcBcCc) over the class of robustly
stabilizing Controllers (ACBCCc)

Figure 12. Performance Is Defined To Be Worst Case Over the Uncertain Parameters
and Average Over the Disturbance Statistics

The resulting Robust Performance Problem thus involves determining the
gains (Ac *c .Cc) to minimize the performance J. The static gain D. can also be

included but will not be discussed here. Despite the apparent complexity of the

problem. remarkably simple techniques can be used. Specifically, first note that

after taking the expected value the performance J has the form

J(Ac.*c.C5) sup lim sup tr Q(t)R. (4.1)
c _i t-)a
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where "tr" denotes trace of a matrix. Q(t) is the covariance of the closed-loop

system, and R is an augmented weighting matrix composed of RV. R12 and R 2. The

covariance Q(t) satisfies the standard Lyapunov differential equation

Q = (A+E'A )Q + Q(A+F.A.)T + V. (4.2)
2 12

where A is the closed-loop dynamics. Ai is composed of Ai. B. and Ci. and V is the

intensity of external disturbances for the closed-loop system including the plant and

measurement noise.

Two distinct approaches to this problem will be considered. The first

involves bounding the performance over the class of parameter uncertainties and then

choosing the gains to minimize the bound. Since bounding precedes control design

this approach is known as robust design via a priori performance bound*. The second

approach involves exploiting the nondestabilizing nature of structural systems via

weak subsystem interaction.

4.1 Robust Design Via A Priori Performance Bounds

The key step in bounding the performance (4.1) is to replace (4.2) by a

modified Lyapunov differential equation of the form

2 = A~q+ A + *(.) + V. (4.3)

where the bound * satisfies the inequality

i~q~A i) ( Qq)(4.4)

over the range of uncertain parameters o. and for all candidate feedback gains. Note

that the inequality (4.4) is defined in the sense of nonnegative-definite matrices.

Now rewrite (4.3) by appropriate addition and subtraction as

2=(A+~A) 4g TA +T A~ 2+2A. + V. (4.5)

Now subtract (4.2) from (4.5) to obtain

- Q (A+EaSA )(?-Q) + (g-)(A EcA)T + *(2) -Ag 9ii T). (4.6)

" : ; ; m mmlm mmmm mm ] .. ....
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Since by (4.4) the term

- a(A _q42A) (4.7)

is nonnegative definite. it follows immediately that

Q 12 (4.8)

over the class of uncertain parameters. Thus the performance (4.1) can be bounded by

J(A cB *C ) J(A ,5 ,C ) B is tr _R. (4.9)

The auxiliary coat J is thus guaranteed to bound the actual cost J. This leads to

the Auxiliary Minimization Problem: minimize the auxiliary coat J over the

controller gains. The advantage of this approach is that necessary conditions for

the Auxiliary Minimization Problem effectively serve as sufficient conditions for

robust performance in the original problem. Since the bounding step precedes the

optimization procedure, this approach is referred to as robust design via a priori

performance bounds. This procedure is philosophically similar to guaranteed cost

control ([9.101). Note that since bounding precedes optimization, the bound (4.4)

must hold for all gains since the- optimal gains are yet to be determined.

To obtain sufficient conditions for robust stability, the bounding function

must be specified. Since the ordering of nonnegative-definite matrices appearing

in (4.4) is not a total ordering, a unique lowest bound should not be expected.

Furthermore. each differentiable bound leads to a fundamental extension of the

optimal projection equations and thus of the basic LQG machinery. In work thus far.

two bounds have been extensively investigated. Only one bound, the right

shift/multiplicative white noise bound. will be discussed here. The structured

stability radius bound introduced in (11.121 is discussed in [A43].

The right shift/multiplicative white noise bound investigated in (A29,A41]

is given by

E 8,(Ctige.D AI2A.). (4.10)

where a. ) 0 are arbitrary scalars. Note that this bound consists of two distinct

parts which must appear in an appropriate ratio. The first term aci arises naturally
cr.t

when an exponential time weighting e 1 is included in the performance measure. As

is well knwn ((13]) this leads to a prescribed uniform stability margin for the
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closed-loop system (Figure 13). A ur2 orm atability margin, no matter how large.

however, does not guarantee robustness with respect to arbitrary parameter
-l" "_T

variations. The complementary second term a i A.iAi is crucial in this regard.

tAx 4 i((A+al)x,a>O
Im

Re

APPLY CONTROL-DESIGN TECHNIQUES
TO RIGHT-SHIFTED OPEN-LOOP SYSTEM

c* UNIFORM STABILITY MARGIN

(Anderson and Moore, 1969)

Figure 13. Open-Loop Right-Shifted Dynamics Arising From Exponential Cost Weighting
Lead to a Uniform Closed-Loop Stability Margin

Although terms of the form AqA are unfamiliar in robust control design.

they arise naturally in stochastic differential equations with multiplicative white

noise. That is. if the uncertain parameters a, are replcced by white noise processes

entering multiplicatively rather than additively, then the covariance equation for Q

automatically includes terms of the form 1.iQA.I The literature on systems with

multiplicative white noise is quite extensive; see [A38] for references. It should

be stressed, however, that for our purposes the multiplicative vhlte noise model is

not interpreted literally as having physical significance. Rather. multiplicative

white noise can be thought of as a useful design model which correctly captures the

impact of :lncertainty on the performance functional via the state covariance.

Furthermore. just as the right shift term alone does not guarantee robustness.

neither does the multiplicative white noise term. Both terms must appear

simultaneously. Roughly speaking. since multiplicative white noise disturbs the

plant though uncertain parameters, the closed-loop system is automatically

desensitized to actual parameter variations.
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After incorporating the right ahift/multiplicative white noise bound (4.10)

into (4.3) to obtain a bound J for the performance, the optimal projection equations

can be rederived following exactly the same parameter optimization procedure

discussed in Section 3. Again, the mathematics required is but a straightforvard

application of Lagranre multipliers. The additional bounding terms are carried

through the derivation to yield a direct generalization of the optimal projection

equations showm in Figure 14 with Sains given in Figure 15.

+A+ A +AGAT,+V+( R 1. 6 AAB- 1. T _ - 1 iT + 1 QTTT

AS a OAI 2s a 2 5  05(.B 2 s"~ Q sV a >a2sa sI

0 A= ,ATP A, P.+ .1T PT- TvT 1 ,

+ R,+ (.AQ5',V 2 )TP(A-Q sV215,)- .TR2  + T ' R 2 &$"1

As.sRssT -1 T ,- T J
0 = (AS'B9R2sP4)O + O(A 5  2 P) + V2' S"- i'sv 2S T

"I 5 5 TA Ais 2 J1, T±1TT"

0= (As.sV;lCs)TP + P(A 5 5V ,Cd+ gR PS- -TP sR26P a

Figure 14. The Robuatified Optimal Projection Design Equations Account for Both
Reduced-Order Dynamic Compensation and Parametric Uncertainty

GAINS

AC = I'(AS-BSR'2S"0-1,V2, Cs)GT

BC = 1osV2s

c = .R'PGT

NOTATION
AA

OP =GTMr, rGT = In.( r = GT " =r 2 )

P P
AOAT= .AIOAT. AOS,: !AiOBI. ec.

I1 I =1

R2s R2 + BT(P+P)B V2s V2 + C(Q+O)C
T

OCT + V12 A(O+O),T + BT(p p),

Figure 15. The OPUS Controller Cains Are Explicitly Characterized as a
Direct Generalization of the Classical LQG Gains
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The robustified optimal projection equations comprise a system of four

matrix equations coupled by both the optimal projection and uncertainty terms. When

the uncertainty terms are absent, the optimal projection equations of Figure 9 are

immediately recovered. On the other hand. if the order of the controller is set
equel to the order of the plant, then all terms involving rL can be deleted.-

However, in this case the modified Lyapunov equations do not drop out since Q and P

still appear in the modified Riccati equations. Hence the basic machinery of LQC is

again extended to include a pair of Lyapunov equations coupled to a generalization of

the standard LQC equations. It is interesting to note that a related result in the

context of multiplicative noise also appeared in the Soviet literature ([14]). It

should also be pointed out that although the modified Lyapunov equations arising in

the reduced-order control-design problem have analogues in model reduction, the

modified Lyapunov equations appearing in the full-order robustified equations

represent new machinery not anticipated in robustness theories. Hence using

straightforward mathematical techniques, the basic LQC machinery has again been

extended in novel directions.

Solving the design equations shown in Figures 14 and 15 yields controllers

with guaranteed levels of robustness. The actual robustness levels skay, however, be

larger than specified by a priori bounds. Thus, to achieve desired robustification

3levels for the uncertainty structure specified by the a priori bounds, the design
procedure may be utilized within an iterative synthesis/analysis procedure

(Figure 16).

SYNTHESIS

ANALYSIS

Figure 16. Optimal Projection/Guaranteed Cost Control Provides
Direct Synthesis of Robust Dynamic Compensators

4.2 Robust Design Via Weak Subsystem Interaction

The mechanism by which LQC was robustified in Section 4.1 involved bounding

the performance over the class of parameter uncertainties and then determining

optimal controller gains for the performance bound. As discussed in Section 2,
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however, flexible structures possess special properties which may. in addition, be

exploited to achieve robustness. Specifically. aside from rigid-body modes, energy
dissipation implies that mechanical structures are open-loop stable regardless of the

level of uncertainty. That is. flexible structures possess only nondestabilizinn

uncertainties. Hence. in the closed loop, a given controller may or may not render a

particular uncertainty destabilizing. A priori bounds on controller performance

must. however, be valid for all gains since bounding precedes optimization. Hence. a
priori bounding may in certain cases fail to exploit nondestabilizing uncertainties.

A familiar example of a nondestabilizing uncertainty involves uncertain

modal frequencies. Such an uncertainty will not. of course. destabilize an

uncontrolled (open-loop) structure. If particular modal frequencies are poorly known

then it is clearly advisable to avoid applying high authority control. Hence, rather

than the right-shift approach of Figure 13, it appears advantageous (although. at

first, counterintuitive) to utilize just the opposite, namely, a left shift

(Figure 17). Furthermore, in view of the fact that uncertainty usually increases

with modal frequency (Figure 18). a variable left shift appears to be more

appropriate than a uniform left shift. By left-shifting high-frequency poorly known

modes, the control-system design procedure applies correspondingly reduced authority

to modes "perceived" as highly damped. Hence the variable left shift can be roughly

thought of as a device for achieving suitable authority rolloff. As will be ceen.

however, the underlying robustification mechanism, namely, weak cuboycrem interaction.

is for more subtle than the approach of classical rolloff techniques. It is also

interesting to note that the weak subsystem interaction approach to robustness is

entirely distinct from classical robustness approaches which utilize high loop gain

to reduce sensitivity.

p
;=Ax - (A+ 21 A )x

2 I= I

Im

LARGE OPEN-LOOP SHIFT------- IN HIGH-FREQUENCY REGION
- LOW CLOSED-LOOP AUTHORITY

SMALL OPEN-LOOP SHIFT
_ _ --- eIN LOW-FREQUENCY REGION

- HIGH CLOSED-LOOP AUTHORITY

gRe

Figure 17. A Variable Left Shift Exploits Open-Loop Nondestabilizing Uncertainties
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MODAL FREQUENCY

COHERENT MODES INCOHERENT MODES
(Suass Cle'm) (Weak CuraIales)

High-Aatha1y Ceslil Law-At IbuT Casual

Figure 18. Modal Uncertainty Generally Increases With Frequency

A variable left shift can readily be introduced into the robustified

optimal projection design equations by replacing A by

A.= A + , (4.11)

where A. denotes the structure of modal frequency uncertainty (Figure 19). Fost

interestingly. such a modification of the dynamics matrix arises naturally from a

multiplicative white noise model defined not in the usual Ito sense but rather in the

sense of Stratonovich. Thus. as in the a priori bounding approach, a stochastic-'?, 1 0 0 !
+ -- r- -i

0 "1 1 L _

L J 0 o

1- _ 0

c* A +%:A 2  P Variable Left Shift

Figure 19. For Modal Systems With Frequency Uncertainty
the Stratonovich Correction Corresponds to a Variable Left Shift
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model serves to suggest a mechanio for robustification (Figure 20). Again it is

important to stress that the multiplicative white noise model is not interpreted

literally as having physical significance. but rather can be thought of as a useful

design model which correctly captures the impact of uncertainty on the performance

functional via the state covariance.

ROBUSTNESS BOUNDS

I \
OUADRATIC LYAPUNOV FUNCTION MAJORANT LYAPUNOV FUNCTION

/ \

ITO NOISE MODEL STRATONOYICH NOISE MODEL }

STOCHASTIC UNCERTAINTY MODELS

Figure 20. Stochastic Models and Robustness Bounds Are Fundamentally Related

In earlier work the Stratonovich dynamics model was justified by means of

the minimum information/maximum entropy approach ([Al-A15]). A central result of the

maximum entropy approach is that the high authority/low authority transition of a

vibration control system from vell-known low-frequency modes to poorly known high-

frequency modes (Figure 18) is directly reflected in the ctructure of the state

covariance matrix (Figure 21). A full-state feedback design applied to a simply

Q1i -o
--...------

Okk ..0

"0 6nn

COHERENT - COHERENT
(WELL-KNOWN MODES) (POORLY KNOWN MODES)

INFORMATION REGIMES

Figure 21. Frequency Uncertainties in the Stratonovich Model Lead to
Suppressed Cross Correlation in the Steady-State Covariance
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supported beam illustrates this point (Figure 22). By assuming that uncertainty in

modal frequencies increases linearly with frequency, the structure of the covariance

matrix leads directly to the control gains illustrated in Figure 23. Note that in

the high-frequency region the position gains are essentially zero and thus the

control law approaches positive-real energy dissipative rate feedback. This. of

course, is precisely the type of structural controller expected in the presence of

poor modeling information. Of course, any effective control-design theory for active

vibration suppression in flexible structures should produce energy dissipative

controllers when structural modeling information is highly uncertain.

ACIUAIOR
AC1* 

5OUII i SMOLUA ESUATIISI

OF MOnIOw I l

+
*IUCCTAtIT11 U f1511411O11

UIICI S

Tyi - _2, (-O KO'ld~

I I K I SITAOAaO 0151t*O10
I.: 24OF OONOOIPROINCY

* SIMPt. f UaClAIIY ROM

* SfUt.T.SUPPORI[O SAM WOtR FORCE ACTUATOR u-'

M PUI.STATI rEHACK

Figure 22. The Effects of Frequency Uncertainties Can Be Illustrated
for a One-Dimensional Beam With Idealized Full-State Feedback

To carry out robustified optimal projection design in the presence of left-

shifted open-loop dynamics, it is only necessary to utilize the left-shifted dynamics

matrix (4.11) in place of the right-shifted matrix. All of the robustified optimal

projection machinery, including gain expressions, can be utilized directly. It is

also important to stress that the left shift must be used in conjunction with terms

of the form QA.T

_1 "

One explanation for the mechanism by which robustification is achieved is

illustrated in Figure 24. By left shifting the open-loop dynamics within the design

process, the compensator poles are similarly left-shifted. Thus the compensator

poles are effectively moved further into the left half plane away from the actual

plant poles. Since the interaction between compensator and plant poles is weakened,

the closed-loop system is correspondingly robustified with respect to uncertainties

in the plant pole locations. A sensitivity analysis of this mechanism utilizing a

uniform left shift in the context of LQG design is given in 15].
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Figure 23. The Maximum Entropy Controller Approaches Rate Feedback in the
Limit of Poor Modeling Information (High Uncertainty)

[A Ac.] : At.]:~ (I6
t -1col.O Plant/campseaator Subsyutem In~teractions
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plant variations

Figure 24.. The Stratonovich Variable Left-Shift Model Effectively Placer. the
Compensator Poles Further Into the Left Half Plane Where

Plant/Compensator Interaction Is Weakened
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As discussed above, the left-shift approach exploi-ts open-loop

nondestabilizing uncertainties and thus cannot operate through a priori bounding.

Thus the actual level of robustification achieved from the robustified optimal

projection equations for a given level of uncertainty modeling cannot be predicted a

priori. i.e.. in advance of control design. Indeed. this situation is to be expected

when nondestabilizing uncertainties are exploited in s nonconservative design theory.

Thus a suitable robust analysis technique is required for nonconservatively

determining the robustification of the closed-loop system with respect to open-loop

nondestabilizing uncertainties.

A suitable robustness analysis technique, known as majorant Lyapunov

analysis, has indeed been developed ([A421). Essentially. this technique employs a

ney type of Lyapunov function for assessing robustness due to weak subsystem

interaction. The underlying machinery consists of the block-norm matrix which is a

nonnegative matrix each of whose elements is the norm of a block of a suitably

partitioned matrix (Figure 25). A matrix which bounds the block-norm matrix in the

sense of nonnegative matrices. i.e.. element by element. is known as a maiorant.

Majorants were introduced in [161 and were applied to stability analysis of

integration algorithms for ODE's in [17].

(Ostrowski, 1961; Dahiquist, 1983)

M1 M12 -

M 21 M2

I S

I M1l[11 II1211 - - -

M= II 2+111 I11-211

NONNEGATIVE CONE ORDERING

Figure 25. The Matrix Majorant Is a Bound for the Hatrix Block Norm.
i.e.. the Nonnegative Matrix Each of Whose Elements Is the Norm of the

Corresponding Block of a Given Matrix
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To apply majorants to dynamical systems, the model is written in the form

shown in Figure 26. The matrix A is block diagonal and consists of subsystem

dynamics. The subsystem interactions represented by the partitioned matrix G are

assumed to be uncertain. By suitable manipulation, uncertalnties in the diagonal

blocks of A can also be captured by G. By assuming that the spectral norm (largest

singular value) of the blocks of G satisfy given bounds, the cuveriance block-norm

inequality in obtained (Figure 27). This inequality is interpreted in the sense of

nonnegative matrices. i.e.. element-by-element, and * denotes the Hadamard (el*ment-

by-element) product.

;:(A* G)x *w O (A + G1G +0(A* G)T V

Known SubSystem Dynamics Unctain SubsysIe in-erscons

[V1  V1 2 --- 0 012---_

2 V2 021 02LiLi " J
Noise inisnaity Stale Covatafca

Figure 26. The Large-Scale System Model Involves Knovn Local Dynamics

and Uncertain Interactions

I,:(A ,G~ w J: E(kTs :irOR

0 r (A + G)Q Q(A I G)T + V j=q(Ai 0 Aj)l

r 'V l[ l l F  ,lV,2JJF---1 0 [1101111 F  11O121j1F--1

l2111F lIV211F 1102111F 11021IF
I 0 I

0 F(G12)---1

fl <_< q + Q9T + V
Figure 27. The Block-Norm Matrix of the State Covariance Satisfies a

Lyapunov-Type Inequality Involving Nonnegative Mtrices
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To achieve robustness. the covariance block-norm inequality is replaced by

the majorant Lyapunov equation (Figure 28). The solution of the majorant Lyapunov

equation provides a bound (majorant) for the block norm of the covariance thereby

guaranteeing both robust stability and performance.

MAJORANT LYAPUNOV EQUATION

fiQ= e Q QST+V

iT(Gji)! -- jij

a Robust Stability

m Robust Performance

Figure 28. The Correaponding Nonnegative Matrix Equation Yields a Majorant
for the State Covariance and Hence Robust Stability and Performance

It is interesting to note that numerical solution of the majorant Lyspunov

equation requires no new techniques. Utilizing properties of H matrices, the

solution can be obtained monotonically by means of a straightforward Iterative

technique (Figure 29).

MLE has a unique solution ill IQK, K=O, 1, .... -1 where:

Qo 0

(\)K+jI (,(I' \K + (Q)KU'T + 1")

(1)"lmn _ !l-Inn)

converges. II so, then:

(: lim QK

r /

J-J0 2 . Otr PK)(XI;)KK
K=1

(0 = A PK + 
PKAK + RK)

Figure 29. By Exploiting the Properties of H-Matrices.

the 4Majorant Lyspunov Equation Can Be Solved Monotonically by Means of a
Simple Iterative Technique
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An illustrative application of the majorant Lyapunov equation involves

lightly damped subsystems (Figure 30). As shown in [A42) (and expected intuitively).

robustness with respect to uncertain subsystem interaction is proportional to the

frequency separation between the subsystems. The ability to capture this

robustification mechanism is a unique feature of the majorant Lyapunov function not

available from quadratic (i.e.. scalar) Lyapunov functions or vector Lyapunov

functions ((18.191).

X

Majorant Lyapunov Equation Bound v 1(2,,)2 + 1-'022"

Figure 30. Robustness Bounds for Uncertain Coupling in Model SystemsAre Proportional to the Frequency Separation Between Subsystems

The next stop in the majorant development involves a hierarchy of finer and"-
finer robustness bounds which account for higher order subsystem interactions. e.g..
the interaction between the ith and jth subsystems via the kth subsystem. The second
member of the hierarchy (Figure 31) provides robustness guarantees with respect to
frequency uncertainties. The interesting aspect of this robustness test is the fact
that the performance bound is characterized precisely by a Stratonovich model. Hence
the Stratonovich model can be viewed as an approximation to a robustness bound. while
exploiting the Stratonovich/majorant relationship leads to a natural
synthesis/analysis scheme (Figure 32) which nonconservatively exploits open-loop

nondestabiliting uncertainties.

1

l i l i J l l s Im m i l ° , m
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SYNTHESIS

UTILIZE STRATONOVICH MODEL
TO EXPLOIT NONDESTABILIZING

OPEN-LOOP UNCERTAINTIES

UTILIZE MAJORANT LYAPUNOV
EQUATION TO CHECK ROBUSTNESS WITH

RESPECT TO CLOSED-LOOP NONDESTABILIZING
SUBSYSTEM INTERACTION

ANALYSIS

Slratonovich synthesis =approximation to majorant analysis

Figure 31. The Stratonovich Synthesis Model Provides a First Approimation to the
Mtajorant Analysis Bounds

Second member of the hierarchy:

-tr[OR]: 2 Otr PK)(b<Q>)KK
K=1

O AO + OAT + III[0) + V
oATP + PA + I-'cP + R

where:
<() off-diagonal part of Q
t.j=Stratonovich model operator

a Tighter bound-Incorporates more information on A and G
a Predicts stability when (A + AT) stable, G = GT
a "Nominal" performance, tr (OR], given by Stratonovich model

Figure 32. The Refined Majorent Sound Incorporates a Stratonovich Covarionce Model
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5. Numerical Alporithms and Examples

Practical design of controllers is only possible when efficient, reliable

algorithms are available. Indeed. the optimal projection equations are readily

solvable and have been applied to a wide variety of examples. Numerical results

appear in [A3-A6.AS.All.A12.Al4-AI6.Al.AI9.A21-A24.A26-A28.A30-A33.A39.A42.A44.A46].

Two distinctly different algorithms have been developed thus far. namely, an

iterative method and a homotopy algorithm.

The iterative method, developed in [A14.AI6.A44) and further studied in

(20.211. is outlined in Figure 33. The nice feature of this approach is that only
a standard LQG software package is required for its implementation. The basic

motivation for the method is the observation that the main source of coupling is

via the terms involving T,. The coupling is absent. of course. when r is the

identity. i.e.. LQG. Note also that the terms Involving 7" are small when R2 and

V2 are large. I.e.. when control cost is high and the measurement noise is

significant. This case, which yields low-authority controllers, is approximately

characterized by decoupled control-design and controller-reduction operations.

Thus it is not surprising that LQG reduction techniques are most successful when

controller authority is low.

Since the 11 terms occasion the greatest difficulty, it appears

advantageous to bring them into play gradually. This can be accomplished by fixing

r after each iteration to yield updated values of Q. P. Q and P. Furthermore. r is

introduced gradually by means of a to reduce its rank.

The crucial step of the algorithm concerns the construction of the

projection V from the pseudogramians Q and P. Specifically. r can be characterized

(see (A221) as the sun of eigenprojectlons of QP. where each choice of

eigenprojectlons may correspond to a local extremal. However, the necessary

conditions do not specify which eigenprojections are to be selected for obtaining a

particular local solution. Nevertheless, there do exist useful methods for

constructing 7. For example, component-cost decomposition methods ((221) when

applied within the optimal projection framework often permit efficient identification

of the global optimum.

Although the iterative method is convenient to use because it utilizes

readily available software, it is suboptimal in the sense that it does not fully

exploit the structure of the equations. Specifically, while the iterative method

addresses a system of four nxn matrix equations, careful analysis reveals that

because of the rank deficiency of the projection the problsm can be recast a four

nczn equations. Hence, when nc is much smaller than n, which is clearly the most

S



EU 291

mC COMPUTE a. P.O. P O
*A..A

T
* A0T V, (*1 -e T *l *T

$-ATP-PA.+ TM R* JA0V~C . g~T2 ~*
A-1 T 1T ^ 1 - T -

A * ,ATRhPg * 8
(A..N br-) -. V*-V h s. *

4Aj.-Q8V;'C1~ T PA ."VCI .T,TT -P,

UPDATE r
BALANCE: 8 i - W A

2 
q,

"I

WT PYW ,IiW-- :A
A DIAG I A,. A1a.

r a W [ I s ,m ~ I ] -I A , > A ,i

z, DIAG -.' --
A,, A,

COMPUTE el V t 
ZIL ' 2L ApL. AD,

ASED O N 0. P ?

E OPUTI Ac. 9, Cc  
I

C€00 PUT1 PIRIORMA11C[
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desirable case for practical implementation, there exists considerable opportunity

for increased computational efficiency. Furthermore. and most satisfying, the

computational complexity decreases with n as is intuitively expected below that

required by L(G design. Hence the optimal projection approach has computational

complexity less than LQG reduction methods for which LQG is but the first step.

S. Richter ([23.A46]) has developed a homotopy algorithm which fully

exploits this crucial structure. Numerical experiments thus far have shown that

considerable computational savings can be achieved over the iterative method.

Furthermore. by applying topological degree theory to investigate the branches and

character of the local extremals. it can be shown that the maximum number of possible

extremals is

(in(n.l. ))

n 
c

if n' in(n.m.A) or I otherwise. Hence in most prctical cases the equations

support a relatively small number of solutions.

both the iterative method and the homotopy algorithm have been applied to a

design problem involving an 9th-order flexible structure originally due to D. Enna

and considered in [1). Specifically. a variety of LQG reduction methods are compared

in [1] for a range of controller authorities. These methods include:

1. Enna: This method is a frequency-weighted, balanced realization technique

applicable to either model or controller reduction.

2. Glover: This method utilizes the theory of Hankel norm optimal

approximation for controller reduction.

3. Davis and Skelton: This is a modification of compensator reduction via

balancing which addresses the case of unstable controllers.

4. Yousuff and Skelton: This is a further modification of balancing for

handling stable or unstable controllers.

5. Liu and Anderson: In place of using a balanced approximation of the

compensator transfer function directly, this method approximates the

component parts of a fractional representation of the compensator.
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All of the above methods proceed by first obtaining the full-order LQG

compensator design for a high-order state-space model and then reducing the dimension

of the resulting LQG compensator.

Figure 34 summarizes the results reported in [l] for the above LQG

reduction methods along with results obtained using the iterative method for solving

the optimal projection equations. Here q2 is a scale factor for the plant

disturbance noise affecting controller authority. Clearly. LQG reduction methods

experience increasing difficulty as authority increases. i.e.. as the r terms become

increasingly more important in coupling the control and reduction operations. For

the low authority cases, the optimal projection calculations, which were performed on

a Harris H800 minicomputer, appeared to incur roughly the same computational burden

as the LQG reduction methods. Although the optimal projection computational burden

increases with authority, comparison with the LQG reduction methods is not meaningful

because of the difficulty experienced by these methods in achieving closed-loop

stability. See [A44] for further details and for comparisons involving transient

response.

The homotopy algorithm was also applied to the example considered in [I].

One of the main goals of the development effort was to extend the range of

disturbance intensity or. equivalently, observer bandwidth. out beyond q2 = 2000. To

this end. second-order (nc = 2) controllers were obtained with relatively little

computation for q2 = 10.000, 100.000 and 1.000,000. In addition, the performance of

each reduced-order controller was within 25% of LQG. These cases can surely be

expected to present a nontrivial challenge to both the LQG reduction methods and the

iterative optimal projection method.

Numerical solution of the robustified optimal projection equations has been

carried out for several examples. For illustrative purposes a 2x2 example was

considered in [A26) and the results illustrated in Figure 35 indicate performance/

robustness tradeoffs possible. The variable left-shift technique was applied in

CA19] to the NASA SCOLE problem with frequency uncertainties. The robustness of LQG

and two robustified designs is shown in Figure 36. The plots illustrate the

degradation in performance due to simultaneous perturbation of all modal frequencies.

Note that LQG is rendered unstable by +5% frequency perturbation while a high-

authority robustified design improves this region to +8. The low-authority design

increases this region significantly while sacrificing 6% nominal performance.
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Method q2 0.01 0.1 1 10 100 1000 2000
n

7 S S S S S S S
6 S S S S S S S -3

Enn6 5 S S S S S S S
4 S S S S S S U
3 S S S S S S S
2 S S S S U U U

7 S S S S S U S

6 S S S S U U U
Glover 5 S S S S U U U

4 S S S S U U U
3 S S U S U U U
2 S U S U S U U

7 S U U S S S S
6 S S S S S S S

Davis & 5 S U S S S U U
Skelton 4 S S U S S U U

3 U U U U U U U
2 S U S U U U U

7 S S S S U U U
6 S S S S U U U

Yousuff & 5 S S S U U U U
Skelton 4 S S S U U U U

3 S U U U U U U
2 S S S U U U U

7 S S S S S S U
6 S S S S S S U

Liu & 5 S S S S S S S
Anderson 4 S S S S S S S

3 S S S S S U U
2 S S S S S S S

7 S S S S S S S
6 S S S S S S S

Optimal 5 S S S S S S S
Projection 4 S S S S S S S

3 S S S S S S S
2 S S S S S S S

S - The closed-loop system is stable
U - The closed-loop system is unstable

Figure 34. The Optimal Projection Approach Was Compared to

Several LQG Reduction Techniques Over a Range of Controller
Authorities for an Example of Enna

e6
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Figure 35. The Robustified Optimal Projection Equations Provide
Robustness/Performance Tradeoffs for a Highly Sensitive Nooinal LQG Desigto
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LQG Desi~n for the NASA SCOLE Model wuith

Uncertain Modal Frequencies



297

6. Additional Extension.

The robustified optimal projection design machinery has been further

extended to encompass a larger number of design cases arising in practical

application. Here ve merely list the extensions:

1. Discrete-time and sampled-data controllers ([A28.A30.A34.A35]).

2. Decentralized controllers ([A391).

3. Nonstrictly proper controllers ([A37]).

4. Distributed parameter systems ([A251).

7. Concluding Remarks

The machinery provided by OPUS for designing active controllers for

flexible structures has been revieved. The basic machinery is a system of coupled

Riccati and Lyapunov equations vhich directly generalize the classical LQG result to

include both a constraint on controller order and a model of parameter uncertainty.

The overall approach thus encompasses all major design tradeoffs arising in

vibration-suppression applications. Substantial numerical experience has been gained

through an iterative method requiring only an LQG software package and. more

recently, by means of a highly efficient homotopy algorithm developed by S. Richter.

The overall approach opens the door for effective design of implementable controllers

U for large precision space structures.

Acknovledgment. We wish to thank Ma. Jill H. Strasehla for the excellent

preparation of this paper.
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The Majorant Lyapunov Equation: A Nonnegative
Matrix Equation for Robust Stability and

Performance of Large Scale Systems
DAVID C. HYLAND AND DENNIS S. BERNSTEIN, MEMBER, IEEE

W
Abstract-A new robust stability and performance analysis technique and uncertainty in the nominal natural frequency ,, is modeled by

is developed. The approach involves replacing the state covariance by its
block-norm matrix, I.e., the nonnegative matrix whose elements are the A(s) = L -

1
(s)()R(s) = bw 

2
,

norms of subblocks of the covariance matrix partitioned according to
subsystem dynamics. A bound (i.e., majorant) for the block-norm matrix L(s) = I/a, 8(s) = 6/o, R(S) = w 2, K(s) = 0,
is given b) the majorant Lyapunov equation, a Lyapunov.ype nonnega. 6 E - in (1, a), a]. c > 0.
tire matrix equation. Existence, uniqueness, and computational tractabil-
Ity of solutions to the majorantl Lyapunos equation are shown to be Note that
completely characterized in terms of M matrices. Two examples are
considered. For a damped simple harmonic oscillator with uncertain but ,,J 16 (jW)] 1 1, w a 0
constant natural frequency, the majorant Lyapunov equation predicts
unconditional stability. And, for a pair of nominally uncoupled oscflla- as required in [6]. The perturbation A(s) (modeled as a feedback
ors with uncertain coupling, the majorant L apunov equation shows that gain) effectively replaces w 2 in G (s) by (I + 6)W,2. Hence. for a
be range of nondestabilizing couplings is proportional to the frequenc) given c > 0 this uncertaint% model permits perturbed natural

separation between the oscillators, a result not predictable from quadratic frequencies in the range [0. (1 + ce) I -,. Evaluating (1. 1) yields
or vector Lyapunov functions. the upper bound

of < [( o 2 - W')z + 4,c:/, w, 0 (1.2)

I. INTRODUCTION or. equivalently,

S ''HE importance of robustness in control-system analysis and <2 s(l - ,) 2 (1.3)
I design cannot be overemphasized. The past ten years'

literature reflects considerable frequency-domain development where v p w,,. The conservatism of (1.3) is obviously most
j1]-[11]. while recent publications indicate increasing time- pronounced when the damping ratio ' is small. In all cases.
domain activity [12]-[19]. Wide variations in underlying assump- however, the conservatism is infinite.
tions, mathematical settings, and problem data render it difficult. The second criterion is obviously subjective and depends upon a
if not impossible. to clearly delineate the relative effectiveness of variety of factors such as problem structure, designer experience.

* different methods. Our own philosophical outlook has thus been and computational resources. This criterion is. in our opinion.
guided b% two general criteria: most important since the need for robustness techniques becomes

1) effectiveness for simple examples: increasingly critical as system complexity grows. Indeed, the
2) efficiency when applied to large scale problems. ultimate test of a given approach is to scale it up to larger andlarger problems to reveal inherent limitations. Obviously, such

The first criterion involves applying robustness techniques to tests are not only difficult, but may entail a significant commit-
simple. perhaps trivially obvious, examples to serve as "acid ment of human and financial resources. Nevertheless, crude
tests." A given method's effectiveness on a collection of such predictions are sometimes available, and a case in point is the
examples can possibly reveal inherent shortcomings. As an "curse of dimensionality" encountered in the approach of (9].
illustration of this criterion, consider a damped harmonic oscilla- Another example involves computational difficulties in obtaining
tor with constant but uncertain natural frequency. Using the bounds for the u-function with more than three blocks [10].
notation of [6]. stability is guaranteed so long as The contribution of the present paper is a new robustness

analysis method developed specifically for large scale systems.
am,[R(jw)(l+ G(jw)K(jw))- 1G(jce)L -'(jw)] < 1, w>0 The basic idea, motivated by the work of Siljak [30] on connective

stability, is as follows. The system is assumed to be in the form of
(1.1) a collection of subsystems with uncertain local dynamics and

uncertain interactions. I Parameter uncertainties are modeled as
where, for P, > 0, either structured or unstructured constant variations contained in

G(s)= (s2 + 2ts+ w-)- prescribed sets. The state covariance, partitioned conformably
with the subsystem dynamics, is replaced by its block-norm
matrix, i.e., the nonnegative matrix each of whose elements is the

Manuscript received August 8. 1986; revised May 6, 1987. Paper norm of the corres-onding subblock of the original matrix. This
recommended by Associate Editor. M. G. Safonov. This work was supported nonnegative matrix satisfies a novel inequality designated the
in part b) the Air Force Office of Scientific Research under Contracts F49620-
86-C-0002 and F49620-86-C-0038.

The authors are with the Government Aerospace Systems Division, Harris Uncertainties in a single subsystem can also be regarded as interaction
Corporation. Melbourne. FL 32902. uncertainties. To see this, write x - (A + G)x twice so that the uncertainty

IEEE Log Number 8716541. G is represented by l0 G l.
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covariance block-norm inequality. The existence of a solution straightforward iteration. (1.6) is even easier to solve than the

to the majorani Lyapunov equation. i.e., the covariance block- original Lyapunov equation ( 4).
norm inequality interpreted as an equation, yields an element-by- To illustrate these results we consider two examples. The first

element bound (i.e., majorant) for the covariance block-norm, example is the damped oscillator already considered in this
hence, assuring robust stability and performance. The relevance section. With little effort the majorant Lyapunov equation yields

of this technique to large scale systems stems from the fact that the (obvious) result that the oscillator is stable for all constant

replacing each subblock of the covariance by its norm can natural frequencies. The second example involves a pair of

significantly reduce the dimension of the problem. Indeed, the oscillators with known parameters but with uncertain coupling. I
dimension of the majorant Lyapunov equation is equal to the The majorant Lyapunov equation yields bounds over which

number of subsystems which may be significantly less than the stability is guaranteed, and these bounds are compared to the

dimension of the original system. actual stability region as a function of frequency separation. The

To illustrate the above ideas in more detail, consider the main result shows that the robustness to uncertain coupling is

covariance equation proportional to the frequency separation. This weak subsystem
interaction robustification mechanism is the principal contribution

0= (A + G)Q+ Q(A + G)r+ V (1.4) of the majorant theory. This example has immediate application to

the problem of vibration control in flexible structures. For this
where A denotes the nominal dynamics, G denot uncertainty in class of problems the open-loop dynamics can be viewed as a
A, V is the disturbance intensity, and Q is the state covariance. collection of uncoupled oscillators which become coupled via
Assuming that A is block diagonal with r diagonal blocks leads to feedback and structural uncertainties.
the covariance block-norm inequality (see Proposition 4.2) The majorant bound developed in the present paper is quite

different from the widely used quadratic Lyapunov function (see,
(I * qS Sg.+ gr+V. (1.5) e.g., (121-1201). As can readily be shown using the methods of

In (1.5), (, Q.. 9, and V are r x r nonnegative matrices, i.e., 1121, 1171-[20], the quadratic Lyapunov function yields robust

each element is a nonnegative number. The matrices Q and V are stability and performance by replacing (1.4) by

formed by taking the Frobenius norm of each subblock of Q and 0=A]2+ QA r+g(j)+ V (1.11)

V, while each component of G is a given constant which bounds
the spectral norm (largest singular value) of the corresponding where fl() satisfies
subblock of the uncertain perturbation G. Hence, 9 is a majorant
for G in the sense of [211-123). Each element of the matrix (I is Go+2GTsn(i)

bounded above by the smallest singular value of the Kronecker for all variations G. It can then be shown that
sum (241-(261 of pairs of diagonal blocks of A. The operation
"*" is the Hadamard product [27], [28], and the ordering (1.13)

s :s "' denotes element-by-element comparison, i.e., the order-

ing induced by the cone of nonnegative matrices 129], [30]. where now, in contrast to (1 .7), the ordering in (1. 13) is defined
The majorant Lyapunov equation is obtained by replacing the with respect to the cone of nonnegative-definite matrices.

inequality (1.5) by the r x r nonnegative matrix equation Indeed, the majorant bound may be more closely related to vector

Lyapunov functions [30]. [31] and the Lyapunov matrix function
. =9i - 9+',. (1.6) [321, [33]. It does not appear possible, however, to use these

A key result (Corollary 5. I) states that techniques to obtain the majorant results on robustness due to
subsystem frequency separation.

C () The reader will observe that this paper exploits a wide variety
of techniques including nonnegative matrices, block norms.

for all stable A + G. Consequently (see Theorem 5. 1), the matrix majorants, the Hadamard product, the Kronecker sum, and

existence of a unique solution to (1.6) leads directly to a guarantee M matrices. Each of these techniques, except majorants, has.

of robust stability over the range specified by g and to a however, been previously applied to control problems in numer-

performance bound involving 4. Moreover, solutions of (1.6) ous instances. In the special case of scalar subblocks, the block-

exist if and only if the r2 x r' matrix norm matrix has, moreover, been utilized by Yedavalli 1131-1151
and others for robustness analysis and design. In this case the

A - diag (vec ()-9 G o (1.8) block norm is known as the matrix modulus. The variety of
algebraic structures employed in the present paper should not be

is an wM matrix n29), s30s. surprising since the quest for increasingly refined robustness
Eventechniques can be expected to invoke correspondingly refined

Lyapunov equation is generally computationally tractable. Specif- uncertainty bounds. Related techniques are employed in [el.

ically, although A is an r' x r- matrix, no computations Furthermore, nonnegative matrix equations involving M matrices
whatsoever need to be carried out with matrices of this arise naturally in a variety of settings (see, e.g., [381, 1391).
dimension. Rather, it suffices to solve only the majorant The contents of the paper are as follows. Section I presents
Lyapunov equation (1.6). In this regard we show that 6. is given notation, definitions, and lemmas for use throughout the paper In
by Section III robust stability and performance are defined for the

= lim (1.9) homogeneous and nonhomogeneous systems. Detailed system
I,. structure and uncertainty characterization are given in Section IV

where if G has only off-diagonal nonzero blocks the sequence and the covariance block-norm inequality is derived. Section V

is generated by analyzes the majorant Lyapunov equation to obtain a majorant for
, the steady-state covariance. The main result, Theorem 5.1,

a 40=0 (1.10) guarantees robust stability and provides a performance bound.
Finally, the examples appear in Section VI.

and is monotonically increasing. Furthermore, the convergence of It. PRELIMINARIES

this sequence is equivalent to A being an M matrix so that it is not
even necessary to form A. Note that (1.6) does not require the The following notation will be used throughout. All matrices

development of new solution techniques. Indeed, since (I. 10) is a are assumed to have real entries.

. ... . m t. lmm m ll~ lmllllllllmllll llll l illlll lllllllllllml 111 mill l[ i . ...
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I expected value Lemma 2. 1.- If Z E RPr 'q and 2 E tq " then
11, IP-'Q, . p real numbers. p x q real matrices.'lipx I  o,.,,ZA -111F:5J Z~jF5-I!ZJ jI2jj-1j. (2.3, 2.4)
1p,0,,, , O pxp identity matrix, pxq zero ma-

trix, 0#, If. furthermore, p = q = r Z 2 0, and 2 is symmetric, then
e, * Kronecker sum. Kronecker product

[241-[27] tr Z- 5 (tr Z), (2) S (tr Z)Jj -11s, (2.5)
* Hadamard product [27], [28] Proof" Inequality (2.4) can be found in (35, p. 2631. Tocol, (Z) ith column of matrix Z prove (2.3). note that when Z is singular the result is immediate.

col (Z)1 Otherwise, ifp = q replace Z and 2 in (2.4) by Z-' and Z2,
vec (Z) : E RmP, Z E IIP'p  respectively. The result now follows from [=,,(Z)]-

-l JI(Z) o,..(Z- t) If p * q, then related arguments apply. Finally, (2.5)
I I is given in [36]. 0 A

Z1,s) (i, j) element of matrix Z Recall (30] that a matrix S E A "'"' is an N matrix if St,,,) s 0,
Z T transpose of vector or matrix Z i, j = 1, - -. , r, i * j. If. in addition, all principal minors of S are
Z-7 (ZT)- or (Z-I)T positive, then S is an M matrix.
tr Z trace of matrix Z Lemma 2.2: Suppose S E 1J'. is an N matrix. Then the
diag (ZI, " , Zp) diagonal matrix with listed diagonal following are equivalent:

elements i) S is an M matrix;
block-diag (Z1, •, Zp) block-diagonal matrix with listed diag- ii) det S * 0 and S-' 2. 2 0;

onal blocks iii) for each y E 11', y a a 0, there exists a unique x E R', x
p(Z) speqtral radius of Z *_ 0. such that Sx = y;
asymptotically stable matrix with eigenvalues in open left- iv) there exists x E R', x > 2 0. such that Sx $- 0;

matrix half plane v) 1, * S P 0 and each diagonal matrix D o I, * S satisfies
nonnegative-definite symmetric matrix with nonnegative ei- [D- '(I, * S - S)] < 1.

matrix genvalues (Z ; 0) Proof: The equivalence of statements i). ii), iv), and v)
positive-definite symmetric matrix with positive eigen- follos from [30, p. 396]. The implication ii) - iii) is immediate.

matrix values (Z > 0) and iii) - iv) follows by setting y = [I I ... 1jr. -
Z, a Z2 Z, - Z. a 0, Z1, Z symmetric Lemma 2.3: Suppose S E R"' is an M matrix and let 9 E
Z, > Z1 Z, - Z 2 > 0, Z1, Z: symmetric fl

' " be an N matrix such that S _> 2 S. Then is an M matrix.
nonnegative matrix matrix with nonnegative elements Proof.- See [30, p. 400).

(Z a : 0) [29]. [30]
positive matrix matrix with positive elements (Z 0) IH. ROBUST STABILITY AND PERFOR.MANCE BOUNDS
Z, >> Z. Z, - Z2 _0
Z " Z' Z' - Z' 0 Consider the nth-order homogeneous system
ZHI Hadamard inverse. (zm) ,.t(

[Zo.J)]- , Z 1. 0
block-norm matrix nonnegative matrix each of whose ele-

ments is the norm of a corresponding G E b C "IP",  (3.2)
subblock of a given partitioned matrix

majorant nonnegative matrix each of whose ele- 6 0 C It, (3.3)
U ments bounds the corresponding ele-

ment of a block-norm matrix where A :O -. JV"" is continuous, A A (6) denotes the known
1iZ11: Euclidean norm of vector Z nominal dynamics for 9 E 0. 0 denotes the unstructured
o,(Z) singular value of matrix Z parametric uncertainty in A. G denotes the structured parametric
a,,,(Z), a,,,,(Z) smallest and largest singular values of uncertainty in A. and 0 E is is the nominal value of G. We first

matrix Z consider the stability of (3.1) over b and 0.
X,(Z) largest eigenvalue of symmetric matrix Definition 3.1: If A (0) + G is asymptotically stable for all G

z E b and 9 E 0, then the homogeneous system (3.1) is robustly
[' Z 1 a,(Z) (spectral norm induced by stable over b and 0.

11 [12) No% consider the nth-order nonhomogeneous system

!IZl4r (trZZT)l 2= E , x(t)=lA( ) + G)x(t)+ w(t), I [0, o) (3.4)
where G E i, 0 E 0, and w(.) is white noise with intensity V a

0. For given G E b and 0 E 0. the steady-state average
quadratic performance is defined by

(Frobenius norm (34]). J(G, 0) lim sup 1[xr(t)RX(t)] (3.5)

In subsequent sections we shall exploit the fact that the norms where R = R T 2 0. The system (3.4) may, for example, denote
11. 11 - 1,, and 1'11 F coincide for vectors. Hence, if Z E R", a control system in closed-loop configuration. There is no need in

then by interpreting $lp = Y 'V I it follows that our development, however, to make such distinctions
In practice, steady-state performance is only of interest when

1iZ112 = 1IZI,= IIZtIF. (2.1) the system is robustly stable. The following result is immediate.
Proposition 3. 1. Suppose the system (3. I) is robustly stable

Furthermore, if Z E IIP"4 , then
Upon first reading the uncertainty represented by (3.3) can be ignored

1I Z1, 1 1 Z11= F vec Z11= Ilvec Z112lvec Z11. (2.2) since the principal contribution concerns the treatment of (3.2).
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over 9 and 0. Then for each G E b and 0 E e, Proposition 4.1: Suppose A is asymptotically stable. Then the
nominal performance J, is given by

J(G, e)=tr QR (3.6)

where n x n nonnegative-definite Q is the unique solution to J. L J(0, 6)= tr OR, = tr 5 V,. (4.11)

O=(A(O)+G)Q+Q(A(O)+G)T+ V. (3.7) ,-I --
Proof: First note that with G = 0 and 0 = 6 the diagonal

We shall only be concerned with the case in which t and e are blocks of Q satisfying (3.7) coincide' with 0, •, Q,. Thus
compact. Since Q is a continuqus function of G and 0, we can
define the worst-case average steady-state quadratic performance

J. j_ max J(G, 0). (3.8)
GE &.OEe I

Since it is difficult to determine J,,, explicitly, we shall seek -v

upper bounds. (Ve Q,) T ve R,
Definition 3.2: If J,,. -s 6, then 6 is a performance bound .1

for the nonhomogeneous system (3.4) over 6 and 0.
[ (A,a Aj vec V,] Tvec R,

IV. SYSTEM STRUCTURE, UNCERTAINTY CHARACTERIZATION, AND

THE COVARIANCE BLOCK-NoRM INEQUALITY

A discussed in Section I, (3.1) and (3.4) are assumed to be in = (vec V,)T(A T 0 A T)- I vec R,
the form of a large scale system with uncoupled local dynamics
and uncertain interactions. Hence, with the subsystem partitioning

I (vec V,) T veC 5,
n x n, (4.1)

the local system dynamics A(O) can be decomposed into = tr 5, V,.
subsystem dynamics according to ,

A (0) = biock-diag {A,(8)} (4.2) The matrices G E t are also conformably partitioned so that

where A0) E ji-",I", 0 E 0. For convenience, denote 0= (G,)'. Go E Rmixj (4.12)

A 'block-diag (i and b is characterized by
i.., 'r b {-G E W" n ow(u<'u i, j=1, ".r) (4.13)

Accordingly. R is assumed to be of the form where yv a 0, i, j = 1, . r, are given constants. For

R = block-diag {R,} (4.3) convenience, define the r x r nonnegative matrix

9 {3Iu},.J. I (4.14)
where R, E 11"' ",, R, a 0, i = I, . r. The intensity Vand
steady-state covariance Q satisfying (3.7) are assumed to be The bound g is a matrix majorant for G E t in the sense of
conformably partitioned, i.e., [211-[23].

Remark 4.1: , is compact and convex.
'= { Vu},J. Vu E Ji""j, (4.4) Finally, let symmetric. positive (I E J111" satisfy

Q= { Qu}4,.. Qu E fl",""j. (4.5) ( )min {Omn(A(O) * A,(6))}, i, j= , .,r. (4.15)'- Ee

For notational simplicity define Proposition 4.2: Let G E b and 8 E e be such that A(0) +
V, - V,,, Q, & O,, i= i, r. (4.6) G is asymptotically stable and let n x n Q a 0 satisfy (3.7).

Then Q defined by (4.7) satisfies
Taking the Frobenius norm of each subblock of V and Q leads to
the r x r symmetric nonnegative matrices V and Q. defined by a * -- <-  +Q.-T+ (4.16)

"' {II _ IIF}',1.1 , 4 {QIQuI:rI}i.1. (4.7) or, equivalently,

Note that A vec4 Q s svec V, (4.17)

11 F= -'-I1Q 11 , 11V 1 -- II Vll. (4.8) where

A few observations concerning the nominal system, i.e., with A _ [diag (vec ()1- 9 s. (4.18)
G = 0 and 0 = 6. are worth noting. if A is stable then so is A, i
= I, - r. and there exist unique, nonnegative-definite , , Proof: Expanding (3.7) yields
E $I",", i = 1, , r. satisfying ) I

( IA (e)Q + QjA(8)1= X, GQk GQiG1+ VI,
o A,0, + 0,A T+ V. (4.9) -I

0=ATJ5, +P,A, + R. (4.10) .j~l "r (4.19)
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Bounding the right-hand side of (4.19) from above using (2 4) Thus. (5.4) is equivalent to
yields for all G EC

vec ,.,=[diag (vec Q)-(L * 9) (1, *

[G,,Qkj+Qik GT]+I V[ S " 1,2 * 19 * 9)] vec ., + [diag (vec ()]-' vec V.
k-I IThus, vi) and vii) follow from v) with 1) = diag (vec () - (1 *

• 9) ®(I, *9). [
< [9 (,.kQ(k.j + Q(,.k)9(j.k, + Since statements i)-vii) depend only upon ( and 9 we have the

k-1 following definition inspired by v)-vii).
Definition 5.1: (a, 9) is stable if A is an M matrix.
Remark 5.1: When 1, * G = 0, i.e., when the local dynamics

while bounding the left-hand side of (4.19) from below using (2.3) have no structured uncertainty, (5.4) simplifies to
implies for all 6 E E

a * 1, =9.+&.T+V, i=0, 1, " ", (5.5)
II - [A,(e)Qo + QjA f(O)lF = ilve (A,()Q,j+ QAf(O))ll)111F= I$e(Aj()Q# A e A )veQ IF or, equivalently,-- [(Ai(O) 0 A,(61)) veC Qj 11hF

m,,(Aj(0) 4A6)) IveC Q I F(.( ,+,(IT+V) ) =0, 1, . (5.5a)

= cr,, (Aj(9) * Ai(0))Q(,j) The following result shows that for zero initial condition, the
iterative sequence is monotonic.

(1(l.) . Proposition 5.2: Suppose diag (vec (k) - I,2 * (9, 9) I 0.
Combining the above inequalities yields (4.16). o Then the sequence { &,} - generated by (5.4) with 0 = 0 and T

Remark 4.2: Since g > 2 0, the r' x r2 matrix Ai is an N 2> z 0 is monotonically increasing.
matrix 130]. Proof.- To simplify notation we consider the case mentioned

in Remark 5.1. Hence, assume (I l. 0. Clearly, if k0 = 0, then
(5.5a) implies that , = (il *V 2 2- 0. Hence, CL) > 2 0

V. THE MAjoRAN-r LYAPUNOV EQUATION Defining A.C _i Q., - . (5.5a) yields

In this section we interpret (4.16) as an equality rather than an (1 * (A4 + 44,g T).
inequality and consider the Lyapunov-type nonnegative matrix
equation Since A4, a _ 0, the result follows from induction.

Remark 5.2: Proposition 5.2 is a particularly useful result in
a * Z=9 ,+ +'V (5.1) applications and can be utilized as follows. Setting 40 = 0, the

sequence { ai) can be evaluated by a simple numerical procedure.
or. equivalently, As will be shown in Theorem 5.1 below, each 4. corresponds to a

robust performance measure 6,. For practical purposes the
A vec .=vec V. (5.2) increasing sequence {&,} can be generated until either conver-

gence is attained (in which case & = lim,., 6, is a robust
Note that since (3 and V are symmetric a unique solution of (5.1) performance bound) or a maximum permissible performance level
is necessarily symmetric. is exceeded. In the latter case the question of convergence is

Proposition 5.1: The following are equivalent: irrelevant since the closed-loop system is known to either be
i) A is an M matrix; unstable for some G E b (i.e., & = oo) or exceed acceptable
ii) det .A * 0 and Ai- _ 0; performance specifications, thereby necessitating system rede-
iii) for each r x r symmetric V 2t 0 there exists a unique r sign.

x r - 2_ 0 satisfying (5.1); We now prove a comparison result for solutions of (5.1).
iv) there exist r x r symmetric V * 0 and r x r symmetric & Lemma 5.1: Assume (, 9) is stable, let d, 0 be r x r

- Z 0 satisfying (5.1); nonnegative matrices where & is symmetric, and assume that
v) diag (vec (?) - (, * 9) . (1, * 9) I 0 and each diagonal

matrix D 2> 2! diag (vec (3) - (1, * 9) 0 (1, * 9) satisfies as< (1, g-5 -< . (5.6)

p(2)- '[9 0 9 - (1, * 9) 0 (I, * 9)])< 1; (5.3) Then (d, 0) is stable. Furthermore, let r x r symmetric ' satisfy

vi) for each r x rsymmetric o 2 a 0 andr x r symmetric *V Vs :5V, (5.7)
a 0. the sequence {,}. generated by let &be the unique, nonnegative solution to (5.1), and let 4be the

unique solution to•3 &,i,-(1, * 9)& ,, -&0, ,(J, • 9)
• = + +. (5.8)

(9- 9).+( -,. )T+V, i=0, 1, .. , (5.4)
Then if a > > 0, it follows thatconverges;

vii) for each r x r symmetric 0 :5 0 there exists r x r 4s s . (5.9)
symmetric V P- 0 such that the sequence { &) ', generated by
(5.4) converges. Proof.- Since

Proof.- Statements i)-v) are equivalent to i)-v) of Lemma
).2. Clearly, vi) implies iii), and vii) implies iv). To show v) 9 diag (vec d) - e
implies vi) and vii) note that I,2 * (9 *9) = (1, * 9) 0 (1, * 9)
and is an N matrix, A is an M matrix, and

vec ((t 1 . ) = diag (vec (t)] vec A.., diag (vac (d d )) + (G -) 9 2t &)>" > 0 ... :
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it follows from Lemma 2.3 that jiX is an M matrix, and thus (d, 9) On the other hand. forp E [0, 1) it follows thai
is stable. Next note that (5.1) and (5.8) imply Qv)= Q( f)-Q(., ,)+Q(p, l)-Q(l, t)+Q(l, t)

Since 0- A -' a O(see Lemma 2.2),V- tV
0, and . a a 0, it follows that (5.9) is satisfied. C3 which implics, for arbitrary x E 11",

Corollary 5.1: Suppose ((I, G) is stable and let . be the xTQOL)X2xr[Q(', t)-Q(I t)]x+XTQ(l t)x.
unique, nonnegative solution to (5.1). Furthermore, let G E tQ ' J
and 0 E 0 be such that A (6) + G is asymptotically stable and Thus, by continuity of Q(, t) in p,
define Q by (4.7) for n x n Q a 0 satisfying (3.7). Then

Jir xrQ(j)xaxrQ(l, 1)x, x E 11". (5.17).< .. (5.10) ,-1

Proof: By Proposition 4.2, Q satisfies the covariance block- Now, since A(l) is not asymptotically stable and (A(1), I) is
norm inequality (4.16). In the notation of Lemma 5.1 define stabilizable. it follows from [37, Proposition 3.2, p. 67] that for

some 9 E R",dl=a, =g, '=a • 4-(q4+ 4 g r) (5.11)
lim gTQ(l, t);?

so that (5.6) is satisfied and (4.16) implies (5.7). Note that with
the notation (5.11), equation (5.8) has the unique solution a = Q
2t 2 0. Hence (5.9) implies (5.10). E Thus, by (5.17)

Theorem 5.1: Assume A is asymptotically stable, 0 is JimgTQCj)g =
continuously arcwise connected, and ((i, G) is stable. Then the 0_,
homogeneous system (3.1) is robustly stable over b and 0, and
the nonhomogeneous system (3.4) has the performance bound and thus

) lim ,IQ(A)IIF= . (5.18)
a max [tr (,(6)Rj)+ 2 (It (5.12) ,-1

[ Io However, (5.18) contradicts (5.16). Hence. (3.1) is robustly
where n, x n, nonnegative-definite Qj(8) and A(8) satisfy stable over b and E.

To derive (5.12) note that since R is block diagonal.
o =A,(O),0,(8) + ,(o)Ar(o)+ Vi, (5.13)

0=AT(8)AS,(e)+A,(O)Aj(e)+R, (5.14) J(G, 6)= tr QR,= (vec Q,)T vec R,

and r x r & is the unique, nonnegative solution to (5.1).
Proof: First note that since robust stability is independent of where Q satisfies (3.7). Furthermore, (4.19) implies

the disturbances, we can set V = I, for convenience in proving
the first result. Hence. suppose (3.1) is not robustly stable. Since ve Q,= - [A,(6) e A,(O)]-
b is convex (see Remark 4.1). A is asymptotically stable, and e is [
continuously arcwise connected, 'here exist Go E At and O:[0, 1] •ve V, + ve (G,IQk, + Q,kG T

-E e such that A (p) A (a(u)) + pGo is asymptotically stable vd

for all u E [0. 1), and A (1) is not asymptotically stable. Define
Hence, using Lemma 2. 1.

Q (A, t) eA-) e ea ' A rT(" 3 ds, t> O , ju E [0 , 1]

0 J(G, )= tr (0,(6)R,)

which is monotonically increasing in the nonnegative-definite G ,
cone with respect to . Clearly. the limit _ve -I ]

+ (ve I[G, Q,,+ Q,,G T.])T Ve Jil(O)

Q(p) - lim QLU, 1), p E [0, 1) k-

exists and satisfies = r(j01(6)R,) + 'tr Aj(6)(GjkQk,+ Q,kGT

0= A(p)Q(A)+Q(p)AT()+I., I A [0, 1). " k-I

Now define r x r nonnegative symmetric 4(p) by _ [tr ({,C0)R,)

4(,) = {II ~ ,ll JLIr) .,., S r "Q1O),

where Qj(u) E I"," s and Q(pA) is partitioned as in (4.5). By + (, (t5 ,(0))a..(Gr,Q,+Q,,G
Corollary 5.1 withO = 6(p), G = pG, Q i 4(p), I E [0, 1), k-1 J
and V = I.. it follows from (5.10) that

Q ()<<4 5 E 10, 1). 15 6 [05.15) < r ( ,(6)R,)+ 2 (tr 6(e)) o,(Gg)UQkj)

i-I k-i:5 I (0,(01R,) +2 (tr ti,(O)) E ,,. (G,*)l O-6 F
II b )l,= ~ .,)I < IQU, ,E [0 1). (5.16) = t r -1
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-r 1 where ', w,. w2 
> 0. Furthermore. let 0 = {G} and

*Ir (Q,(0)R,) +2 (tr J5, (0)1
,-i Lk-I 0k,) [ ]

= [tr (QAO)Rj) + 2 (tr A(6))(G), 1 ] which denotes the fact that the local subsystem (oscillator)
" dynamics are assumed to be known. Since

which yields (5.12). D" om(Aj e A,) = [4 V2 + (Wj.- j,) 2] ,,2

VI. EXAMPLES define
We first confirm that the damped harmonic oscillator is 2P (40 + (, - W /21

asymptotically stable for all constant frequency perturbations. 1Lr4V2 +(1 -W 2)]I12 2v J
Hence, let

Letting V = 14 yields V = 212. Solving (5.1) yields
r=1, n= nj= 2

and I,.f=2= (2 v - 12 721 + y12)/2 (' " - '712721),

6.0.2) = (112 + 7172)/212(p&€ V12Y2),

2 V -0.2(2.2 =  Y12V '21 + y~1)/2 Sv2&$ YR2"ZI)

where P > 0 and w E [R. To represent frequency uncertainty let b where
= {o}. 0 -i, G = 0, and _ [l+6J] 2, (

A(O)=A +6[ 0 1 . Clearly, 4. is nonnegative if and only ifA(O)A+O -1 0

Note that A (0) is stable for all 0 E P1 with poles - v ± j(w + 0). 712-r2, < V:S. (6.1)
Note that A (0) can be diagonalized by means of the unitary The bound (6.1) characterizes the magnitude of coupling uncer-
transformation tainty for which stability is guaranteed. Note that the parameter 6

is a measure of the frequency separation of the oscillators relative
I ,--2 [ j , b- --- 1 1 J to the damping. When 6 * 1. (6.1) becomes asymptotically

so that 712721 < I Wi - W2 1 (6.2)

A()~~'A (O)4o- v +j(w~+ 6) 0 1 which confirms the intuitive expectation that robust stability is
0 - -j(o + 6) proportional to damping and subsystem frequency separation.

This result does not appear to be predictable from quadratic or
Hence. using vector Lyapunov functions.

To evaluate the conservatism inherent in the bound (6.1) we
A(6) 6 A(0)=(4,-' O,-)(A (6) A(0))( ®€) solve for the actual stability region. To render the calculation

it follows that tractable we assume that G2 and G21 have the structured form

amrn(A (6) a A(0))= 2v, 0 E Rl. G,=[ 0 .j (6.3)

Defining [see (4.15)] By constraining (6.3) the set of coupling variations is reduced,

a= (a(,, = 2v which may or may not lead to a larger stability region. Thus, our
estimate of conservatism may itself be conservative, i.e., the

and g = 0, the scalar majorant Lyapunov equation (5.1) has the actual conservatism may indeed be less than the following
solution analysis indicates. However, without (6.3) the development

becomes intractable. This calculation will thus be called semiex-
Oct.By considering the characteristic equation for A + G, lengthy

where 1 = V11 F. Choosing V = 12 and noting that A = (I = 2P manipulation shows that A + G is stable if and only if
> 0 is an M matrix, Theorem 5.1 guarantees robust stability for
all frequency variations 0 E R. 7,,726<2(- +[1 +610 -)] /')/(l 2) (6.4)

The next example has been chosen to demonstrate the robust-
ness of a pair of nominally uncoupled oscillators with respect to where c E (0, 1] is the smallest positive real root of
uncertain coupling. Hence, let

n=4, r=2, n,=n2=2 -( + (2 )[1 +62 (l - 2 )] "2/1 2 + 62 (l -e2 )]. (6.5)

The majorant bound (6.1) and semiexact bound (6.4) ameand illustrated in unified form in Fig. I. For 6 * I note that f ,

r 1 0(6-') and thus (6.4) becomes asymptotically
- [ -" ',,27127,< l '< -P . (66) •
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Hence, for large 6 the majorant bound (6.2) is. at worst, and the system has the performance bound
conservative by a factor of 2 compared to the semiexact bound.J. V2p/To determine the performance bound (3.12) set R =1.Hence, -=.,,V~,1 + 2 )4 - 2 p12p21) (6.7)
it can be shown that hr

J..2/p' 0,z2/V1f,21-r2S2, P2 7 2 1 /,,/~idln
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MEI0.l) matrix iterations," J. Math. Anal. Appl., vol. 41. pp. 137-147,

1973.
S[2C- 4 2p 2 X- 2(AP1 2p 21)
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1. Introduction

Recent technologies have required the modeling and control of increasingly complex systems

such as flexible space structures, electric power systems, large scale manufacturing systems, and

flexible manipulators. Correspondingly, there is an obvious need for analysis tools which can

qualitatively and quantitatively describe the behavior of these systems in the face of uncertainties

in the representative mathematical models. Thus, over the past decade there have been considerable

interest among the systems research community in robustness analysis for multivariable sysems.

(See for example [14,15]).

However, although significant attention has been given to the issue of robustness analysis,

the current literature concentrates largely on the qualitative issue of robust stability. To date

very little work has been published on the quantitative issue of robust performance. One notable

exception is the application of the A function [2] to performance analysis. In [2] performance is

measured -in terms of the L , norm of a specified performance matrix, such as the output or input

sensitivity matrix. However, this is only one possible performance measure. For example, one is

often interested in time-domain performance measures which are expressed in terms of the transient

* or steady state behavior of selected system variables (e.g., inputs and outputs) when the system

is subjected to specified signals and disturbances. Covariance majorant analysis [1] another recent

recent development in robustness analysis does measure system performance in terms of steady

state behavior.

Specifically, covariance majorant analysis considers linear interconnected systems which have

structured parametric uncertainty and are subject to white noise disturbances. The analysis of [1]

then develops a robust stability condition and upper bounds on the variances of selected system

variables. In the present paper it is shown how covariance majorant analysis leads to both lower

and upper robust performance bounds. The upper bounds developed here are less conservative

(i.e., smaller) than those of [1].

The paper is organized as follows. Section 2 briefly reviews the developments of [1] and presents

results which are needed in the analysis of the next section. Section 3 then develops the new bounds.

The reduced conservatism of the new bounds is illustrated by the example of Section 4. Section 5

then presents concluding remarks.
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Before proceeding some notation and definitions are presented.

IP pzp identity matrix

zj i or Z(i.j) (i,j) element of matrix Z

zij (i,j) matrix block of partitioned matrix Z

diag (zI,...,z,) diagonal matrix with listed diagonal elements

block-diag (z,..., ZM) block-diagonal matrix with listed diagonal blocks

Y * Z [yijz~j], Hadamard product of matrices Y, Z of equal dimensions

[12-13]

ZHI [Izij,], Hadamard inverse of square matrix Z

col,(Z) " column of matrix Z

coli(z)

vec(z) z ERv"P
LcolP( W

Y 9 Z [yjZ], Kronecker product of matrices Y and Z [10-11]

Y E Z Y ® Ip + I1 ® Z, Kronecker sum 6f matrices Y E IRx and

Z E IRPxP [10-11]

Y << Z Y," :5 Z" for each i andj

nonnegative matrix matrix with nonnegative elements (Z _ 0)

tr Z trace of matrix Z

Gmin(Z), max(Z) smallest and largest singular values of matrix Z

IIZIIs spectral norm of matrix Z (= o,~.(Z))

IIZIIF Frobenius norm of matrix Z (IIZII2 - ZZEzA)
i 3"

IIZIIA absolute norm of matrix Z(= maxziI)
Let Z be the n x n block-partitioned matrix

Z = [zo.](,. .=i ...... , 11

where Zj' E IR"'i x" and -'n = n. The block norm matrix [7,3] of Z with respect to the matrix
i=1

norm -li (which is also called the "0 block norm") is the r x r nonnegative matrix

Z0 = [Z]o [IlZ,il,](,=l.,) (1.2)

Thus, Zs and Zp represent respectively the block norm matrices of Z with respect to the spectral

and Frobenius norms.
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Majorants [8] are essentially upper bounds for block norm matrices. Precisely, ± E IR"x " is a

I majorant of Z (with respect to the norm 11 le) if

, _< .(1.3)

A matrix P E IRPx P is an M-matriz [4-6] if it has nonpositive off diagonal elements [i.e., piy :__ 0

for i $ j] and positive principal minors. There are many equivalent definitions for an M-matrix.

(See [4]-[6]).

2. Preliminaries

Consider the system

i(t) = (A + G)z(t) + w(t) (2.1)

where z E IR' and w is a white noise process with intensity V. It is assumed that the system (2.1)

represents r (r < n) nominally stable subsystems described by A with uncertain interactions and

dynamics described by G. Specifically,

A = block-diag{Aj)r 1  (2.2)

where A, E IR"' xn is asymptotically stable and n i n. The matrices G,V E IR""' are
'=1

partitioned conformably so that

G = [Gi,](j,=j ......) (2.3a)

V = [ViijCj= ...... ) (2.3b)

where Gij,Vj E IRn i xn,. In addition,

GEG (2.4)

where

G = {G E IRnXn: G.<<). (2.5)

That is the spectral norm of each block Gi . of the uncertainty matrix G is bounded above by the

corresponding (i,j) element of the nonnegative matrix 6 E IRrx" . Thus 6 is a majorant of each

admissible G.

If A + G is asymptotically stable, then the state covariance Q is the unique solution of the

Lyapunov equation

0 = (A + G)Q + Q(A + G) T + V. (2.6)
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Q is partitioned conformably with A, G and V so that

Q = [Q],=L ..... ) (2.7)

where Qj3 E IRf i xni.

Now define the positive matrix A E IRFx* by

a =min(Ai9A.), i,i= 1,...,r. (2.8)

Also, define A E IR 2 as

A ! [diag(vecA)] - 6 D 6. (2.9)

These matrices appear in the following lemma which presents the covariance Frobenius block norm

inequality initially proved in [1]. An alternative proof based on the block Kronecker product is

found in [3].

Lmmna 2.1. Consider G E G such that A+G is asymptotically stable and let Q be the solution

of (2.6). Then Qr. satisfies the matrix inequality,

A*Q, :5:5QF +46"T+VF (2.10)

which is equivalent to the vector inequality

AvecQp << vecVF. (2.11)

Definition 2.1. The pair (A,6) is stable if A defined by (2.9) is an M-matrix.

If (2.10) is interpreted as an equality, one obtains the Lyapunov-Iike equation

*t -- +d r +V. (2.12)

or equivalently

Avec4 = vecVr. (2.13)

Since A is an N-matrix [5] (i.e., it has nonpositive off-diagonal elements), it is invertible with

A ' > > 0 if and only if it is an M-matrix [4-6]. The following result then follows immediately

from the equivalence of (2.12) and (2.13).

Lemma 2.2. The pair (A,d) is stable if and only if for any VF _ 0, there exists a unique

(nonnegative) solution of Q of (2.12).

4



Remark 2.1. Q may be computed by inverting the r2 x r2 matrix A iL (2.13). Alternatively, it

3is shown in [1], that 10 = lin... (5(i) where (O) >> 0 and the monotonically increasing sequence

is generated by

S+ _(It * G)Q(' + } - * G) (2.14)

• z -- (G- I*G)Q(') + Q (i)( G - r*)T+VF e, 1=0,1,...

or equivalently

(i+1)=(-_-_T)H [(G-_*I, G) (') + (i)(6 - I , ) + VF], i 0,1,... (2.15)

where d E IRr x r is defined by
-A..

3=g , ,j=l,...,. (2.16)

The following comparison result shows that Q is actually a majorant of the state covariance

Q. A proof of this result is presented in [1]. A simplified proof is given here.

Lemma 2.3. Suppose (A, 6) is stable and let 10 be the solution of (2.12). Then, for each G EG

such that A + G is asymptotically stable, the solution Q of (2.6) satisfies

Qr - Q. (2.17)

Proof. Since QF satisfies (2.10), it follows that for some nonnegative U E IRr X r
I

*QF = GQF + QFG +7F - U. (2.18)

Subtracting (2.18) from (2.12) yields

0- = 60 - + (-; )6 T +U. (2.19)

It then follows from Lemma 2.2 that

-;UF >> 0. (2.20)

The proof of the next result on stability robustness is based on Lemma 2.3 and is presented in
[1].

Theorem 2.1. Consider the system described by (2.1)-(2.5) and assume (A,G) is stable. Then

for each G E G the plant matrix A + G is asymptotically stable.
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Although Theorem 2.1 is a useful result in covariance majorant analysis, an equally important

result is that the majorant analysis allows one to obtain an upper bound on the variances of selected

system variables. Thus, in what follows the cost function

J(G)=trQR, R=RT>0 (2.21)

is considered where R has the partitioned form

R = (2.22)

and 1?j E IRn' Xn'. This cost function can represent the variance of one of the system variables.

For example if s given by
8 = CTr, c E IR" (2.23)

is a system variable of interest, then

R = ccT =:- J(G) = E(s 2 ). (2.24)

Now define

J mi. -!_ i J(G) (2.25)
0G

,. 2- max J(G). (2.26)

Definition 2.2. If for the system described by (2.1)-(2.5), J, 1 n > a and Jx < , then a is a

lower performance bound and P is an upper performance bound.

In [1] majorant analysis was used to develop an upper performance bound #I for the special

case in which R is block-diagonal (i.e., R " ! 0 for i 4 j). This result is presented below in Theorem

2.2.

Before presenting this theorem define the nominal state covariance Q0 E IR n x n to be the

unique, nonnegative definite solution of the Lyapunov equation

0 = AQO + QOAT + V. (2.27)

Q° has the partitioned form

Q°= [Q,](,,'=i...,) (2.28)

where :. E IR '" #". Also, for i = 1,...,r define P o E IR nx " i to be the unique nonnegative

definite solution of

0 =AP," + P,eA. + A.. (2.29)
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Theorem 2.2. Assume (A,,G) is stable. Then for each G E G, A+G is asymptotically stable. In

addition, if R is block-diagonal then the system described by (2.1)-(2.5) has the upper performance

bound r

61 = tr QR + 2 Z(tr Pj*)(GQ)(j,j) (2.30)

where Q, Q° amd P* are the respective solutions of (2.12), (2.27) and (2.29).

3. Imuroved Peformance Analysis

The upper performance bound 61 presented in Theorem 2.2 is based upon developing a ma-

jorant Q of the state covariance Q by beginning with (2.6), the Lyapunov equation in Q. In this

section Q is expressed as

Q=Q°+AQ (3.1)

where Q° is the solution of (2.27). Subtracting (2.27) from (2.6) and using (3.1) yields

0 = (A + G)AQ + AQ(A + G)T + GQ ° + QoGT. (3.2)

The perturbation AQ has the partitioned form

AQ = [) (3.3)

where AQjj E IRS' x"i. In what follows it is shown that by using (3.2) to develop a majorant AQ

of AQ, it is possible to develop a less conservative (i.e. smaller) upper performance bound than

that of Theorem 2.2. In addition, the analysis of this section develops a lower performance bound

which has no counterpart in [1].

Consider any two matrices M, N E IR" X ' partitioned identically. Then as shown in [3],

+[M N] F _5!5 + + F (3.4a)

[MN]F :5:5 M.NF (3.4b)

[MNIF - MFNS. (3.4c)

Using (3.4) it follows that for each G E G,

[GQ ° + QOGT]F 5-5 « GiIF + [QGT IF

<_< -O-T
«55Z . + QFGS

<< + T .  (3.5)
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Lemma 3.1 which presents Frobenius block norm inequalities for Q0 and AQ is now an immediate

result of Lemma 2.1 and (3.5).

Lena 3.1. Consider G E G such that A + G is asymptotically stable and let Q° and AQ be

the unique solutions of (2.27) and (3.2). Then Qi. and AQF satisfy

A*Q 5< <VF (3.6a)

A * AQF _5_ GAQF + AQFGT + GQp + Q+ . .  (3.6b)

Now interpret (3.6) as equalities to obtain

A* = VF (3.7a)

+ A*d + + + a O~T. (3.7b)

Lemma 3.2 which shows that 00 and AQ are majorants of Q0 and AQ follows immediately from

Lemma 2.3.

Lemma 3.2. Suppose (.,6) is stable and let ° and A be the (unique, nonnegative) solutions

of (3.7). Then for each G E G such that A+G is asymptotically stable, Q° and AQ, the respective

solutions of (2.27) and (3.2) satisfy

'U*. _<_< 1o (3.8a)

QF AQ. (3.8b)

An important result is now presented. This result reveals that the sum Ci + AQ is a smaller

majorant of the covariance Q than is (. This result is subsequently used to develop lower and upper

performance bounds OC2 and 82 and to demonstrate the reduced conservatism of 02 compared to

the performance bound 0i described in Theorem 2.1.

Lemma 3.3. Suppose (A,G) is stable and let 0 and AO be the (unique, nonnegative) solutions

respectively of (2.12) and (3.7b). Then for each G E G, Q and QO the solutions respectively of

(2.6) and (2.27) satisfy
Q __ +: 5: < (3.9)

Proo It follows from (3.1), (3.4a) and (3.8a) that

-i4 = FQo + QF5- 'a; + -- F + AQ (3.10)

8



which proves the left hand inequality in (3.9).

Now, let Q be the (unique nonnegative) solution of

A * AQ = GAQ + AQGjT + + -O 6T (3.11)

Subtracting (3.7b) from (3.11) yields

* (AQ - AQ) = d(Ac - AO) + (Q - AO)6 T + 6(° - ) + - Q)c r . (3.12)

Since Q0 >> Q,
- + (&O -o)dT >> o. (3.13)

It then follows from (3.12), (3.13) and Lemma 2.2 that

A << AQ. (3.14)

Adding (3.7a) and (3.11) yields

* i, ( & + AQ) = + AQ) + ( o + AQ) T +VF. (3.15)

Comparing (3.15) and (2.12) reveals that

u +z=Q. (3.16)

Thus, using (3.8a), (3.14) and (3.16) yields

+ A _ +A < + Q0 (3.17)

which proves the right hand inequality in (3.9).

Notice that substituting (3.1) into (2.21) yields

J(G) = J° + AJ(G) (3.18)

where

JO ! tr Q0 R (3.19)

AJ(G) tr AQR. (3.20)
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Substituting into (3.20) the partitioned forms of R and AQ given respectively by (2.22) and

(3.3) gives

AJ(G) - Ztr AQ,,jR + tr AQ,R,,. (3.21)
i=1 i=1 i-I

An alternative expression for the first summation in (3.21) is presented below in Lemma 3.4.

Lemma 3.4. Consider the system described by (2.1)- (2.5) and assume A+G is asymptotically

stable. Then AJ(G) given by (3.21) can be expressed as

r r rr

AJG =Ztr Pj*Gjiq,. + QjjGK) + EZ1:tr AQ,3 R31 . (3.22)
i=1j='--1 1=1 y-1

Proof. The perturbation AQ solves (3.2) which by using (3.1) can be expressed as

0 = AAQ + AQAT + GQ + QG (3.23)

Using the partitioned forms of the matrices amd considering the (i, i) block of (3.23) gives

0 = AAQjj + AQiiA7 + E(GiQj + QjG7.). (3.24)
j=1

Then by using the appropriate Kronecker product identities [10- 11] (3.24) can be expressed as

vecAQji = -(A. E A. - Zvec(GiQi, + QjGl'). (3.25)
j=1

Recognize that for any two square matrices Y and Z

tr YZ = (vecY)TvecZ. (3.26)

Then using (3.25) and (3.26) gives

tr AQR, = - Z[vec(G.Qj, + Q,,G.)IT(Ai ED A,)-TvecR,. (3.27)
j=1

But it follows from (2.29) that

vecPj* = (A, ED A.)-TvecRA, (3.28)

and so
r

tr AQjjR, = - Z[vec(GjQj, + QjG.)]TvecP,* (3.29)
j'=1

10



which by using (3.26) can be expressed as

m tr AQjRP. = tr Pj*(GijQij + Q1jG7). (3.30)

The proof is completed by substituting (3.30) into (3.21).

The main results of this paper are given below as Theorem 3.1 and Corollaries 3.1 and 3.2.

Before presenting this result two important trace inequalities are given. First, for P E 1~q'P define

the matrix I norm by q 
P

IIPII' E I I Pi I - (3.31)
• j=1

Proposition 3.1. For each M E IRP x  and P E IRq~P,

I tr M P 1: I II AIIPIIr. (3.32)

V q

tr MP I =1 > 3 _ irp,' I
I j=1

-IIMIIAIIPIIr.

If certain structures of M and P are known, a much less conservative upper bound on tr MP I
may be given. The next result is derived in [9].

Proposition 3.2. Consider M, P E IRYP' such that M = MT > 0. Then

I tr MP IS (tr M)IIPII.. (3.33)

Now the main results of this paper are presented.

Theorem 3.1. Suppose (A,G) is stable. Then A + G is asymptotically stable for each G EG

and

max I AJ(G) I:5 A. (3.34)
GEG

where

AJ =2 (tr P") (6W. + A)) + Z A IIRjjI (3.35)
t=1 1=1 y-1

11



Proo. The asymptotic stability of A + G is simply a restatement of Theorem 2.1. So for each

G E G consider the cost perturbation AJ(CG) described by (3.22) and recognize that

I AJ(G) 1_1 AJA(G) I + I AJB(CG) I (3.36)

where

I AJA(G) 1:5 tr P(GjjQj, + Q,,G.) I (3.37a) -
i=1 j=1

r r

AJB(G) 1: FF, I tr AQj-Rj, I (3.37b)
/---- j-1

Using (3.33) and (3.9) it follows that for each G E C

I tr P,0(CGjQj + QjjG; 5< (tr P,*)IIG,,Q,- + Q1jGl.II

52(tr P, )llC ,,ll.llQ jj lla
_ 2(tr M)llC,,-1.IIQ,II

52(tr 13A)Gd' [(QF){(')-+-(AM(){,]

which substituting into (3.37a) gives

I AJA (G) 1! 2 E(tr Pfl) (6 (QO + AM) ,). (3.38)
i=1

Also, using (3.32) and (3.8b) it follows that

Itr AQ,,Rj I -: IIQIAII4iiI,,

< IIAQiIIjIIR,,UII
< AI0,j,)llRi, jl

which substituting into (3.37b) gives

I AJB(G) 1_5 ZZAQ c,)IIR,II,. (3.39)

The proof follows from (3.36), (3.38) and (3.39).

Remark 3.1. One may be tempted to apply the inequalities (3.8b), (3.32) and (3.33) to the

expression for AJ(G) given by (3.21). This yields

max IAJ(G) 1< Aif (3.40)GEG

12
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where
r r r

AJ= (tr Rii)A10i,i) + E E~~IjA~ ) (3.41)
i~l i=1 j-1

However, it can be shown that

AJ> AJ (3.42)

S- such that AJ is a more conservative bound for the magnitude of the cost perturbation than is Ai.

It is easily seen from (3.18) that

P-I AJ(G) 1: J(G) :5 JO+ I AJ(G) I (3.43)

where j is given by (3.19). The following corollary is then immediate.

Corollary 3.1. Under the conditions of Theorem 3.1 the system described by (2.1)-(2.5) has

the lower performance bound a 2 and the upper performance bound #2 given by

a 2 = tr (Q'R) -,AJ (3.44)

#2 = tr (QDR) + AJ (3.45)

where Ai is given by (3.35).

Remark 3.2. It is important to recognize that the results of Theorem 3.1 and Corollary 3.1

actually allow multiple objective analysis. For example if the analyst is interested in m costs

Ji(G)=trQR('), i=1,...,m (3.46)

representing say the variances of m system variables then Corollary 3.1 yields lower and upper

bounds a(') and # ( ) such that for each G E G,

a(') < Jj(G) _ ( ) , i = 1,....,I . (3.47)

The next corollary compares the upper performance bounds of Theorem 2.2 and Corollary 3.1

for the case in which R is block-diagonal.

Corollary 3.2. Assume that R is block-diagonal. Then under the conditions of Theorem 3.1

the upper performance bounds 61 and #2 given respectively by (2.30) and (3.45) satisfy

2 <# 1. (3.48)

13



In addition, if

10 _= (3.49)

then

,2 = #- (3.50)

Proof. Subtracting (2.30) from (3.45) yields -
r

#2 - #I =2 -(tr P o) (c( +A4 - 4))(.,) (3.51)
i= 1

It then follows from (3.9) that

+Q'+55 _ <0 (3.52)

which implies that

02 - O _< 0. (3.53)

Now assume (3.49) holds. It then follows from (3.12) that

AQ = AQ. (3.54)

Using (3.49), (3.54) and (3.16) gives

~+AQ Q Q +Aq&Q (3.55)

which substituting into (3.51) reveals

2 - #1 = 0. (3.56)

4. An Example

This example considers the robustness of a pair of nominally uncoupled oscillators with respect
to uncertain coupling. Specifically, consider the system described by (2.1)-(2.5) with

n=4, r=2, nl=n 2 =2 (4.1)

A ,, (4.2)
1 -2 .2

14



[0 .1
S=[: 1 (4.4)|[.10

Notice that the eigenvalues of A, and A2 are given by

A(A) = -. 1 ± j (4.5)

[A(A 2 )11,2 = -. 2± j2. (4.6)

The matrix A defined by (2.9) is an M-matrix and thus the system is stable for each G that satisfies

G .(4.7)

Now consider the quadratic performance J(G) defined by (2.1) with

R = h. (4.8)

The results of the robust performance analysis are presented in Table 4.1. The values JL and Js

were obtained by generating a set GR of 10,000 random G matrices satisfying

b .(4.9)

and letting

JL = max J(G) (4.10~a)

SIs = min J(G). (4.10b)

Obviously,
J. J(G) (4.11a)

is > Jim- in J(G). (4.11b)
GEG

It is conjectured that

JL S- J.. (4.12a)

JS Ed ain (4 12b)

and thus JL are useful indicators of the conservatism inherent in the performance bounds 0i,1 2

and C2.

The parameter JL predicts that Jmx is 6.81% greater than the nominal performance J°. The

performance bounds 61 and 62 respectively indicate that J,, may be as much as 30.4% or 23.8%

15



greater than the nominal value. Thus in this example, the new upper performance bound 02 is

significantly less conservative than the original upper bound 61.

Table 4.1

nominal performance, J* 15.0000

upper performance bound, 02 18.5704

upper performance bound, #1 19.5579

largest random performance, JL 16.0208

lower performance bound, a 2  11.4296

smallest random performance, Js 14.6103
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1. Introduction

In the analysis of complex and large scale dynamic systems it is often

advantageous to regard the overall system as a collection of interacting

subystems. Properties of the aggregate system can then be deduced from the

- properties of the individual subsystems and their interconnections.

(See e.g. [6.7.11,14] for a small sample of the numerous published results

which take this approach.) For linear systems this type of analysis often

involves manipulating the matrix subblocks of block-partitioned matrices.

Some tools that have been useful in systems analysis are the Kronecker

product and the matrix modulus. The Kronecker product, for example, has

found use in the solution of linear matrix equations [1.4.10.17]. the

development of matrix calculus [4.9,13.16] and dynamic sensitivity analysis

[3,4]. However, the Kronecker product was designed for matrices partitioned

into their scalar elements. For example if A, Q, and B are matrices, then

the Kronecker product allows one to writeU
vec(AQB) = (BT  A)vec(Q) (1.1)

where vec(• ) is the vector valued operator which stacks the columns of a

an matrix in a vector. However, suppose Q were partitioned into matrix

subblocks. Then the operation (1.1) destroys this structure.

The matrix modulus of the matrix Q is the matrix Jqijj and has been

used to develop robust stability conditions for dynamic linear systems

[11.18]. However, if Q is partitioned into matrix subblocks, the matrix

modulus is too fine in that it is based on a property (the absolute value)

of the scalar elements of a matrix. Conversely, a norm I IQI 8 of the matrix

Q is too coarse in that it totally ignores the block-partitioned structure

of the matrix.

What are obviously needed are tools designed specifically for block-

partitioned matrices. One such collection of tools has been based on matrix



majorants and minorants [5]. The purpose of this paper is to develop

additional results based on the block Kronecker product and the block norm

matrix, generalizations respectively of the Kronecker product and modulus

matrix to block-partitioned matrices.

The paper proceeds as follows. In Section 2 the block Kronecker

product is introduced and some of its algebraic properties are presented.

Then, in Section 3 the block norm matrix is defined and some related

equalities and inequalities are given. Next, Section 4 presents results on

block-diagonal and diagonal matrix structures. These results are useful in

Section 5. which uses results developed in the previous sections to derive

in a simplified fashion the covariance block norm inequality of [7,

Proposition 4.2].

Before proceeding we present some notation. It is assumed that the

matrices are in general complex.

I pxp identity matrix

Hadamard product [15]

* * Kronecker product. Kronecker sum [4,8]

col. (Z) ith column of matrix Z
1

col (Z)

vec(Z) . , Z is a pxq matrix

col (Z)
q

Z T  transpose of matrix Z

ZH conjugate transpose of matrix Z

z. ij(i.j) element of matrix Z
A

Z << Z z.. < z.. for all i and j
- - 3.J

nonnegative matrix matrix with nonnegative elements (Z >> 0)

tr(Z) trace of matrix Z

2



Amin (z). Amax (Z) minimum and maximum eigenvalues of Hermitian matrix Z

o. (Z) singular value of matrix Z1

~ (Z), W(Z) smallest and largest singular values of matrix Z
min max

IlZile any norm of matrix Z (not necessarily induced by a
£ vector norm)

IZII 0 any norm of matrix Z induced by a vector norm 1'a
0(IIZII 0  max I Zyll)

I ly Ila = 1

I1y112  Euclidean norm of vector y

I IZ II Spectral norm of matrix Z. induced by the Euclidean
norm 11-112

IZIll Frobenius norm of matrix Z (IIZII2 =E 2 1F F

2. Block Kronecker Products

This section introduces the block Kronecker product and a related

vector valued function vecb(.). The algebra associated with the block

Kronecker product is also presented (in Table A). The reader familiar with

the standard Kronecker algebra will quickly recognize that the block

Kronecker algebra is almost identical. This is essentially due to property

(A.3) of Table A.

It should be recognized that below the primary consideration is the

special case of square matrices with square diagonal blocks. This

restriction is to avoid notational complexity and confusion. However, most

of the results extend to more general partitions. The extensions-

require. a clear definition of how various matrices are partitioned (such as

when multiplying rectangular matrices A and B).

Consider the nxn partitioned matrices

A= [Aij](i.j = 1.....r) (2.la)

3



B [Bii](i.j (2.1b)

r

where Aij and Bij are n..xn and E = n. The n 2xl vector vecb(A) is

i=1
defined by

vec (A 1 1 )

vec(A r)

vec (A1 2)

vecb(A) vec(A r2 (2.2)

(e Ai r)

vec(A )
rr

Notice that vecb(*) is a linear operator.

It is desired to define an operation A j B such that for an nxn matrix

D partitioned identically to A and B

Tvecb(BDA) = (A B)vecb(D). (2.3)

This motivates the definition of the block Kronecker product of A ind B,

denoted by A6 B. A i B is the n2xn2 matrix defined by

A 11 B A12 0 B ... A1r * B

A B A 21 ® B A22 B ... A2r ®B

(2.4)

ArlAr2 ... Arr B

4



where the n.n x n.n matrix product Aij O B is defined by

1 i j 12 ij lr
A.. 0 B - A Aii D B 21 A ij B B22 ... A ij 0 B 2r

A.. 22 .•r (2.5)

LAi ®rl 3ij ® r2 .. ij @ Brj

The block Kronecker sum of A and B is denoted by A @ B and is defined by

A B = A j I+ I B. (2.6)n n

Recognize that if the matrices A, B and I are partitioned into their scalar
n

elements (i.e.. r=n) then A j B = A(& B and A D B = A e B, such that the

block Kronecker product and block Kronecker sum reduce respectively to the

Kronecker product and Kronecker sum.

Some of the basic algebraic properties of the block Kronecker product

and block Kronecker sum are presented in Table A. In this table it is

assumed that A and B are nxn matrices partitioned as in (2.1) and C and D

are nxn matrices partitioned identically to A and B. Also. f(-) denotes an

analytic function. The eigenvalues of A are denoted by A i) (i=l,...,n) and
a U) denotes the corresponding eigenvectors. Similarly, the eigenvalues of

B are denoted by " . and -- i) denotes the corresponding eigenvectors.

Recognize that if A or B have redundant eigenvalues then it is possible to

have a Q) = a (k ) or )9 Q- = (k) for j~k. Thus statements (A.15)-(A.17) in

Table A are not redundant.

To understand (A.17) it is necessary to define the block Kronecker

product of two vectors. So consider the n dimensional partitioned vectors

T T

[xl [, 2 ... a xT (2.7a)

T T T T]2.b
SY 2 . r



r

where x. and Yi are n. vectors and En = n. Then. the n2 xl vector
1 1- 1i=1

x D y is defined by

•~ ~ I y 'x® Y
4D, yi

- (2.8)

where

2

(2.9)
XrY

Table A
Algebra of Block Kronecker Products

(A.1) vecb(ADB) = (B T A)vecb(D)

(A.2) vecb(AD+DB) = (BT i A)vecb(D)

(A.3) A j B = PT (A @ B)D for some permutation matrix P

(A.4) (A+B) C = A@ C + B C

(A.5) A (B+C) =A B+A C

(A.6) (A jB)T = AT  13T

(A.7) (A j B)(C ij D) = (AC) j (BD)

(A.8) (A j B)- = A71 B-1

(A.9) B i A = Q(A @ B)Q for some permutation matrix Q

(A.10) det(A B) = [det(A)det(B)]n

(A.11) tr(A x B) tr(A)tr(B)

6



(A.12) f(I *A) = In i f(A)

(A.13) f(A I n) = f(A) * In

(A. 14) exp (A 6B) exp (A) exp (B)

(A.15) The eigenvalues of (A @ B) are the n2 numbers

A )(j)

(A.16) The eigenvalues of (A @ B) are the n2 numbers
AU)(i~j=1,2,....n)
A~)~(j)

(A.17) Of 4 ) is an eigenvector of A B with

eigenvalue X(i)A ( j ) and is also an eigenvector of

A Q B with eigenvalue P

The proofs of most of the properties presented in Table A are easy once

the validity of (A.1) and (A.3) is established. Thus the proofs of these

two statements are presented and then the proofs of the remaining results

a are discussed with the exception of property (A.17) whose proof is presented

in detail

Proof of (A.1). By definition

Im

vec((ADB) 11)

e)
vec ((ADB) r)

vec((ADB) 12)

vecb(ADB) = vec((ADB) r2) (2.10)

vec (-AB-) r)

vec((ADB) rr)

7



The (p.q) block of (ADB) is given by

r r

•(ADB) = EA .D.IBiq (2.11)
pq ij

i=1 i=1

Also.

vec(A .D.iBiq) (BT 0 A p)vec(D). (2.12)

Substituting (2.10) and (2.11) into (2.9) shows that vecb(ADB) may be

expressed as an rxr block matrix where the (p.q) block has dimension

nn xn n q and is given by
Pq Pq

(B Tp A..)vec (D.q)

(B A2j )vec (Djq)
m [vecb (ADB) ] =

pq 
(2.13)

F,( DA .)vec (D.
qp rj jq

L
or equivalently,

vec(Dlq)

[vecb(ADB)] = ( T  A) vec(D 2q)

pq qp

(2.14)

vec(D rq)

(A.1) follows from (2.14).0

Proof of (A.3). Consider the equation

T
ADB = C (2.15)

6
which is equivalent to
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(A 4 B) vec (D) = v ec (C). (2.16)

Applying (A.1) to (2.15) yields

(A iB)vecbC(D) =vecb (C). (2.17)

Now. there exists a permutation matrix P such that

vecb(C) = Pvec(C) (2.18a)

vecb(D) = Pvec(D). (2.18b)

Substituting (2.18) into (2.17). premultiplying by Pand using P = 2
n

yields

p T(A FOB) N(D) = vec (C) . (2.19)

Subtracting (2.16) from (2.19) yields

(pT (A t B) P - (A OD B)]vec (D) =0. (2.20)

Since (2.20) is valid for all choices of D it follows that the expression in

(]is identically zero.O0

(A.2) now follows from (A.1). (A.3) implies that

A 0B =P(A j )P (2.21)

The proofs of (A.4)-CA.9) are then obtained by substituting (2.21) into the

equivalent expressions for the standard Kronecker product and Kronecker sum

(4.8]. For example. substituting (2.21) into

(A(D ) (C (DD) = (AC) (t (ED) (2.22)

9



rI

yields

P(A B)PTP(C D)PT = P(AC).i (BD)P . (2.23

Pre- and post-multiplying (2.23) respectively by PT and P yields (A.7).

The proofs of (A.10)-(A.11) and (A.15)-(A.16) follow from the

equivalent results for the Kronecker product and Kronecker sum [4.8]. the

property (A.3) and the fact that the determinant, trace and eigenvalues of a

matrix are invariant under similarity transformation.

Since f(.) is analytic, there exists a scalar sequence {f i--O such

that t

f(X) = Efn. .  (2.24)

n=O

Also. from (A.7) it follows that
I

(In j A)' = I U Ai  (2.25a)

U1 n(AeOIn) = A elI. (2.25b)

The proofs of (A.12) and (A.13) follow from (2.24) and (2.25). (A.14) is a

direct result of (A.12) and (A.13).

Finally, the proof of (A.17) is presented.

Proof of (A.17). Let col (M) denote the first column of the matrix M

and let the nxn matrices E and F satisfy

col 1 (E) = a(i) (2.26a)

col 1 (F) = j(J). (2.26b)

10



L DThen.

col 1 (AE) = M a ( i )  (2.27a)

col1 (BF) = (a)L(3)" (2.27b)

Using (A.7) one may write

(A B)(Ej F) = AE BF (2.28)

and thus

(A I B)col1 (E j F) = A @ BF. (2.29)

Recognize that for any nxn matrices M and N

col1 (M i N) = col 1 (M) i col 1(N). (2.30)

The proof is completed by using (2.30) and substituting (2.26) into (2.27)

to obtain

(Aj B) (a ) M 1 0 ) ) = X(i)P (x(P )  j ()). (2.31)

3. Block Norm Matrices

This section defines the block norm matrix and block comparison matrix
of a given matrix. Then some basic properties of the block norm matrix are

presented.

Consider the pxq partitioned matrix

N =[N ( . (3.1)



Sq

U v

where Nij is Pxqj. pi = p and qi =q. Then for any matrix norm
i i

define the uxv block norm matrix N0 [121 by

Re = [IIN 1I a] (i=l....p; j=l....,q). (3.2)

The nonnegative matrix N. is a generalization of the modulus matrix

([IN ij 1) for scalar partitioned matrices

Also, consider the pxp partitioned matrix

M = [14 (ibj=i.....u) (3.3)

where Mij is p Xpj. Let 1l'll denote a matrix norm induced by the vector
norm I[* [I and define the uxu block comparison matrix H [12] by

M# MIO 4- (Mij I (i.j=1 .... .u) (3.4a)

where

M. (3.4b)

M.. =-Il[M. 1 for i~j. (3.4c)

Here it is assumed that if M.. is singular, then ri ii = 0. m is a

generalization of the comparison matrix [2] for scalar partitioned matrices

Some of the properties of block norm and block comparison matrices are

presented in Table B. However. before discussing and proving these

properties we state the following results on matrix norms.

12



Proposition 3.1. Let U be an mxn matrix and V an nxp matrix. Then

(rmi(U) I lql I,? I. l IUV 1 .? % ax(u) l vl I F  (3.5a)

I lul I (r%(V) < IUV I I,? IIUI i!aO (V). (3.5b)

2

Proof. Express IIUVII 2 as

IIUVII2 = tr(VHUHUV). (3.6)

But A has the modal composition

UHU EHE (3.7)

where E is unitary and

2 n,
f= diag W (U)I. (3.8)

1. 1-1

Thus,

2 H (9
2UVIIF = tr(VHEHMV) = trVEVVHE (3.9)

It follows that

2 (Utr(EVrE) < I IUVlJ 2 < (r2(U)tr(EVVHEH). (3.10)
rMi n  -max

(3.5a) then follows since

tr(EVVHE) = tr(VVH) = 1 2 (3.11)

(3.5b) is proved similarly by usirg

2UVII tr(UVV •). I (3.12)

13



Proposition 3.2. Let U and V be arbitrary matrices. Then.

0max(U 0 V) = rmax(U)Gmax(V). (3.13)

Proof.

2H

m(u ( v) = a((u W v) W z v)H) (3.14)

Using known properties of the Kronecker product [4,8] it follows that

2

.mx(U 0V) = X.(UUH 0VVH)

= X CUUHA (VVH)
max

- ,2 ,U) a2v) (3.15)
Omax: max

Proposition 3.3. Let U be an arbitrary matrix. Then.

I IvecCU)IIF = I(IUlF. (3.16)

Proof. The result follows from the definition of the Frobenius norm 11I1 F . I-0

In Table B, c denotes a scalar. M is a pxp matrix partitioned as in

(3.3). N and R are pxq matrices partitioned as in (3.1) and P is an sxp

matrix partitioned compatibly with M and N. A. B and D are nxn matrices

partitioned identically in the form (2.1). The partitions of vecb(D) are

assumed to be the vectors vec(D..) and the partitions of (A i B) are chosen

compatibly (i.e. the partitions are all of the form Aij Bkl).
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Table B
* Block Norm Matrix Properties

(B.1) [518 = ICIe

(B. 2) (NR] 6 cc N R +Rie

-(B. 3) [N10L I

(3.4) [F -- < L sF

(s~) ]F - EFs
(B.6) [ F _

(B.7) [A j B] s = Xs  B s

(B. 8) [A ii B$ .__< i

(B. 9) [vecb (D)] F = vec (DF)

(B.1) and (B.2) follow immediately from the norm properties

SI UcNII = Ic HINI e and the triangle inequality.

IIN+RJl) - I INI8 + IIRI 16. (B.3) is a result of the triangle inequality

and the induced norm property IIPNII < I IPII IINII .

* •Before considering the remaining results- recognize that

a- (N..) = IINi II (3.17a)
max ijij s

-1 -1 (3.17b)

(B.4) and (B.5) then follow respectively from the triangle inequality and

the right hand side inequalities of (3.5a) and (3.5b).
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Proof of (B.6).

u

II(MN)IOIt = IIM..N.. + F M. IF .  (3.18)
13 Fi 11 13 ' ik kj'

k=l
k#i

It then follows from IIN+RJI > JINIJ - IIRJI and (3.5a) that

u
II(MN) II > a- (M..)IIN. II - II M.NkII. (3.19)

13 F-mimi 1 ij1 F £..4Ikj F
k=l
k~i

But since

U u

I1F MiNkj1F IIMI IFIIN kjllF. (3.20)

k=1 k=l
k~i k4i

it follows that

u

II(MN) ijl F _> 'rMin(Mii) ll ijll F + E(- I IM 13F)lINjl F  (3.21)

k=1
k~i

which is equivalent to

u

[[(MN) ijIIF _ (M )ik(Ns)kj. (3.22)

k=1

(B.6) follows from (3.22). 0

Proof of (B.7).

(A B) = [Aij S B (i.j=l.....r) (3.23)

16



where

3ij 1 ij 12 ... ij lr

Aij B 21 Ai 2 ... Aij ® B2r

A 40 B (3.24)
AJ . . ~B. .B
Aij rl ij B r2 ... Aij V Brr

It follows that

(A B) [(A. B)] (3.25)
s ij (i,j=1....,r)(

Using (3.13), write

ilAij V Bki is = IIAijils JIBk~lI' s . (3.26)

Substituting (3.26) into (3.24) yields

(Aij ( B] = s I i j i s "  (3.27)

(B.7) follows from (3.25) and (3.27).13

(B.8) now follows from (B.2) and (B.7). (B.9) is a result of (3.16).

4. Diagonal Structures

In this section results concerning block-diagonal and diagonal matrices

are presented. These results are used in the example of the next section.

Assum3 that A and B are nxn matrices of the form

A = block-diag(Ai  (4.la)
1 i=1

17



B =block-diag(B 1r (4.1b)
ii=1

r

where A. and B. are n I n . and En I=n. Then A B is the n 2xn 2matrix

A i B =block-diag{C }r (4.2a)
1 i=l

where C. is the n in x n in block-diagonal matrix,

[ A 2(42a
C L 0 .B .A VB 3 r

Thus A j B is block-diagonal with diagonal subblocks of the form A. 4D B.

It follows that A $D B is the n 2xn 2matrix

A i) B = block-diag[D )r (4.3a)
1i1

where D . is the n n x n in block diagonal matrix.

A1 1 0

0 AA2 B B r]

Thus A F) B is block-diagonal with diagonal subblocks of the form A. B..

Now suppose v is an r 2vector and E is an r 2xr 2diagonal matrix.

Express E as

E = block-diag(E r (.4a

where the rxr diagonal matrix E.i is given by

18



Ei  diag(e ij. (4.4b)

Then

m vec (Ev) = E*vec (v). (4.5)

where "*" denotes the Hadamard product and

S= te ijI (i.j=1.....r)" (4.6)

5. An Illustrative ExamnIe

We now use results from Sections 2, 3 and 4 to derive the covariance

block norm inequality found in [7. Proposition 4.2].

Consider the nth order system

x(t) = (A+G)xCt) + w(t) (5.1)

where w(t) is white noise with intensity V. It is assumed that the nxn

matrix A is a stability matrix of the form

A = block-diag[A i} r (5.2)

r
where A. is n.xn. (En.--n) and represents the dynamics of the ith

1 1 1 __?.

1
subsystem. G is an nxn matrix partitioned compatibly with A. The off-

diagonal blocks of G represent the uncertain interactions among the

various subsystems. It is assumed that for some nonnegative rxr matrix G.

G<< G. (5.3)
S-

Notice that G is a matrix majorant of G [5].
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Assuming (A+G) is a stability matrix, the asymptotic state covariance Q

satisfies the Lyapunov equation.

0 = (A+G)Q + Q(A+G) T + V. (5.4)

Assume that all matrices in (5.4) are partitioned compatibly. Then

operating on (5.4) with vecb(-) and using (A.2) yields

-(A D A)vecb(Q) = (G i G)vecb(Q) + vecb(V). (5.5)

and thus

[-(AO A)vecb(Q)] = [(GO G)vecb(Q) + vecb(V)],. (5.6)

Considering the right hand side of (5.6) and using (B.2). (B.4). (B.8).

(B.9) and (5.3) consecutively, yields

[(G G G)vecb(Q) + vecb(V)]F

<< [(G 6G)vecb(Q)]F + [vecb(V)] F

<< [G O G] s [vecb (Q) ] F + [vecb(V)] F

< (Gs OG s) vecb(QF) + vec (Vi)

_ (G 0 G) vec(QF) + vec(V,). (5.7)

Similarly, considering the left hand side of (5.6) and usir,& (B.1), (B.6)

and (B.9) yields

[-(A@ A)vecb(Q)], > (A @ A)r vecb(QF). (5.8)

Thus, from (5.6)-(5.8)

20



(A A)avec) (G G)vec(QF) + vec(VP). (5.9)

It follows from (4.3) that (A A) is the r 2r 2 diagonal matrix

(A A) = block-diag{ [D I I (5.10a)

where [Di] s is the rxr diagonal matrix

[D.] = diag{- in (Ai  A.)} r " (5.10b)

Define the nxn matrix A by

A = [ (A. D A.)] (5.11)
~e

Then using (5.10) and (4.5) and operating with vec-l() on both sides of

(5.9) yields

A* L- Ga, + ,,T (5.12)

which is the covariance block norm inequality of [7, Proposition 4.2].

2
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Abstract

This work considers uncertain multi-input multi-output sysems described in the frequency
domain. The theory of nonnegative matrices and M-matrices is used along with majorant bound-
ing techniques to develop robust stability and performance results for two types of uncertainty.
The first type is uncertainty with norm bounded subblocks (i.e., IIQ~j(Jw)jIs < jij(jw)). The
second type is uncertainty that has subblocks with known patterns but unknown gains (i.e.,
Qij(jw) E {3j1j(jw)W1j(jw) :1 Oj(jw) 1 _ 4j(jw)}). For uncertainties of this type a recursive
analysis methodology is developed which yields increasingly nonconservative results. Throughout
this paper performance is measured in terms of the deviations of the outputs from their nominal
values. The results are illustrated by a numerical exampl,.



1. Introduction

A central problem in feedback control is to achieve acceptable performance in the presence

of uncertain plant dynamics and disturbances. This necessitates the development of analysis tools

capable of determining the behavior of a given feedback system in the presence of uncertainty. Thus,

over the past decade considerable attention has been given to the issue of robustness analysis.

In the frequency domain setting initial attention was given to unstructured uncertainty, that is,

norm bounded uncertainty. This focus led to the development of singular value analysis [1-5] which

is particularly useful for systems with unmodeled high frequency dynamics. However, when the

uncertainty has structure, it is well known that singular value analysis can yield very conservative

results.

This conservatism has led to the investigation of analysis tools applicable to systems with

uncertainty which is more structured. References [6-18] present analysis methodologies for a variety

of forms of structured uncertainty. These methodologies generally depend upon one or more of the

following tools:

* (i) non-L 2 (i.e., L, or L,,) matrix norms [7,10]

(ii) weighted matrix norms or system transformation [6,7,10,14-16]

(iii) the theory of nonnegative and M-matrices [7,8,10-13]

(iv) mapping theorems [17,18]

A common feature of many of the robustness results to date is that they consider only the

qualitative issue of stability. However, in practice one is also concerned with the quantitative

issue of performance where performance is measured in terms of the effect of certain signals or

disturbances on specified system variables. Robustness results which do address the performance

problem are found in [15,26-29].

This paper uses the theory of nonnegative matrices and M-matrices along with majorant bound-

ing techniques [24,33] to develop robust stability and performance results for two types of uncer-

tainty. The first type is block-structured uncertainty and consists of uncertainty with norm bounded

blocks ( i.e., IQjj(jw)Ijs _ 4j(jw)). The second type is patterned block-structured uncertainty.

Uncertainty sets of this type have some blocks with known patterns but unknown gains (i.e.,

Q,,.(ju) E 13, (j j)Wij(jW) :1 8'i(Jw) 1- 4,j(Jw)))



The paper is organized as follows. Section 2 presents notation and mathematical preliminaries.

Section 3 states and formulates the general problem under consideration. Section 4 then presents

robustness results for systems with structured uncertainty. It is shown that the robust stability

results are nonconservative if the nominal transfer matrix P(s) is block-diagonal. Next, Section

5 considers systems with highly structured uncertainty and develops a recursive methodology to

obtain increasingly nonconservative robustness results. Section 6 presents an illustrative example. A
Finally, Section 7 summarizes and discusses the main results.

2. Notation and Preliminaries

In the following notation the matrices and vectors are in general assumed to be complex.

IR (IR+) set of (nonnegative) real numbers

C (C+) (closed right half) complex plane

Ip p x p identity matrix

ZH complex conjugate transpose of matrix Z

zij (i,j) element of matrix Z

Zif (i,j) matrix block of partitioned matrix Z or (i,j) element of Z

block-diag (Z 1,..., ZM) block-diagonal matrix with listed diagonal blocks

Y << Z yi" _< zj for each i and j

nonnegative matrix matrix with nonnegative elements (Z >> 0 or equivalently

Z E IR' x" for some m and n)

IQ[ absolute value of scalar a

p(Z) spectral radius of square matrix Z (If Z >> 0, p(Z) is the Perron

root of Z 131,321.)

det(Z) determinant of square matrix Z

IIiI2 Euclidean norm of vector z ( =)

amax(Z) largest singular value of matrix Z

I Zfls spectral norm of matrix Z (= O'max(Z)), subordinate to the

Euclidean norm

Lno the space of all rational n-vector functions bounded on the jw-axis
(i.e., IIv(iw)JI2 < co for all w).

Sn x n  the space of all rational, stable and proper n x n transfer-function matrices

!!S11o So norm of S(s) E SnXn( = sup"am,,x[S(jW)])
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Let A, B E C' x n and z E C have the partitioned forms

A = [A] ( 3,=I ......) (2.1)
B = [B,](1,=..) (2.2)

XT = [XT,..., ,T] (2.3)

AM r

where AjjBij E C"nx'i,z E Cn" and -ni = n. The block norm matrix [20,31] of A is the r x r
i=l1

nonnegative matrix

A [IIA~jis] (j=.r) (2.4)

Similarly, the block norm vector of x is the nonnegative vector i E IR" defined by

YT A [II11 1 2,...- , I I=,11=].- (2.5)

For convenience block norm matrices and vectors will be referred to simply as "block norms".

Subsequent analysis will use the following block norm relations [33].

(c A) =cA, a E ER (2.6)

(A+ B) << A+ B (2.7)

(AB) < (2.8)

S(Axz) <Ax. (2.9)

Majorants [22] are essentially element-by-element upper bounds for block norms. Precisely,

nonnegative A E IRrX r and i e IRr are majorants respectively of A and x if

S << Ai (2.10)

I << i. (2.11)

A matrix F E IRP'P is an M-matrix [28-30] if it has nonpositive off-diagonal elements [i.e.,

pij < 0 for i 5 j] and positive principal minors. There are many equivalent characterizations of

M-matrices [28-30]. A particularly useful one for the analysis of this paper is that F is an M-matrix

if and only if it has nonpositive off- diagonal elements and a nonnegative inverse (i.e., F -' >> 0).

Also, if D E lR"+ , then Im - D is an M- matrix if and only if p(D) < 1.
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An n x n rational transfer-function matrix H(s) is stable if it has no poles in the closed right

hand plane (i.e., it is analytic). A linear time invariant system with input v, output y and transfer

representation

y(s) = H(s)v(s) (2.12)

is stable if H(s) is rational, stable and proper (i.e., H(s) E SnXn). This definition of system

stability is equivalent to bounded-input bounded-output stability.

The Hoo-norm of S(s) E Snxn(ISIoo) generates a topology in S " . Given any set H C S " '

it is possible to define a relative topology in H [5]. The set H is arcwise connected if given

any two elements Ho(s) and HI(s) in H, there exists a continuous map M : [0,11 --* H, such

that MA(O) = Ho(s) and .M(1) = HI(s). In more physical terms, if H is arcwise connected then

it is possible to perturb the system from H0 to H, continuously without abrupt changes in the

properties of the plant. For example, if H0 has a open right half plane zero and H1 has a open

left half plane zero then H0 can be perturbed continously to H1 only by having a zero cross the

imaginary axis. That is, for any continuous map .M(-) having the properties described above, there

exists a p E (0, 1) such that H'(s) = M (p) has a zero on the imaginary axis. The reader is referred

to [5,16] for further discussion of these results.

3. Problem Statement and Formulation

Consider the linear time invariant systems

y(s) = -Ps)Q(s)y(s) + R(s)v(s) (3.1)

y(s) = -Q(s)P(s)y(s) + R(s)v(s). (3.1)'

The input v and output y are in C' and have the partitioned forms

V T(3.2)

T = [YT,...,I (3.3)

where vi,yi E C"' and Eni = n. The transfer-function matrices P,Q and R are partitioned
i=1

conformably with v and y such that

P = [P,'](ij=.r) (3.4)

4



Q = [Qri)(i=1 ...... (3.5)

R = [Rrj]{,d=,...,) (3.6)

where P~i,Q-,, Rj, E Cn ' ×xn. It is assumed that P(s) is a known matrix while Q(s) and R(s) are

members of the given uncertainty sets Q and R. That is,

- Q(s) E Q (3.7)

R(s) E R. (3.8)

Definition 3.1. A system (3.1) or (3.1') is said to be robustly stable if it is stable for each

Q(s) E Q and R(s) E R.

Many uncertain systems can be represented in the form (3.1) or (3.1'). For example, consider

the decentralized control configuration of Figure 3.1 where A(s) is an additive uncertainty repre-

senting uncertain subsystem interconnections. The relationship between j and v can be expressed

as

[4, + (GC(s) + A(a)) K(a)] g(s) = [G(s) + A(s)]K(s)v(s). (3.9)

Now, (omitting the argument a for convenience) the return difference matrix can be factored as

[I + (G + A)K]= [I + AK(I, +GK)-'][I, +GK]. (3.10)

Substituting (3.10) into (3.9) and letting

yes)- +I -tG~s)A(s)] 9(s) (3.11)

yields

[I. + Q(s)P(s)]y(s) = R(s)v(s) (3.12)

where

Q~s) = A(s) (3.13)

P(s) = K(s) [I,, + G(s)K(s)]- (3.14)

R(s) = [G(s) + Q(s)]K(s). (3.15)

Notice that equation (3.12) is identical to (3.1'). Also, notice that P(s) is block-diagonal. This

motivates the specialization of the robust stability result of Theorem 4.1 (given in the next section)

to the case in which P(s) is block-diagonal.
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An example of a system which is representable by (3.1) is the block-diagonal perturbation

configuration [7,14-15,18] of Figure 3.2 which motivated Doyle to develop the structured singular

value [14]. This configuration corresponds to choosing

P(s) = M(s) (3.16)

Q( = A(s) (3.17)

R(s)= P(s) (318)

in (3.1).

In what follows only the system (3.1) is considered. However, all results are applicable to the

system (3.1') by making trivial modifications.

Subsequent analysis also assumes that the input v in (3.1) is known and bounded on the

imaginary axis (i.e., v(s) E L' ). It is desired to obtain sufficient (or necessary and sufficient)

conditions for robust stability and to obtain bounds on the performance degradation due to the

uncertainty. Performance here is measured in terms of the magnitude of the deviation of the vector

partitions of y(jw) from their nominal values (i.e., the values of the yj(jw) for Q(s) - Q°(s) E Q
and R(s) = R 0 (s) E R). This criterion allows us to look at performance degradation as a function

of frequency. The choice of the nominal transfer-function matrices Q0 (s) and R ° (s) is elaborated

in subsequent discussion.

Below, it is also assumed that P(s) and each R(s) E R are rational, proper and stable (i.e.,

P(s) E Snxn and R c SnX'). In addition it is assumed that the uncertainty set Q is a set of n x n

transfer-function matrices with (at least) the following four properties.

P1. Q c Snxn.

P2. Q is arcwise connected.

P3. OEQ.

P4. There exists nonzero Q(s) E Q such that P(s)Q(s) is nonconstant and

det [I + P(s)Q(s)] : 0 for all s E C+.

An example of an uncertainty set satisfying properties P1-P4 is the set of transfer-function ma-

trices in Snxn whose matrix blocks have norms which satisfy fixed bounds on the jw-axis, (i.e.,

JIQ,,(jw)Ijs - q,(jw)). This case is considered in Section 4.
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Since P(s), Q (s) and R(s) are eacb assumed to be proper and stable, it follows that the system

(3.1) is stable if and only if

det [In + P(s)Q(s)] 6 0 for all s E C+. (3.19)

The nominal transfer matrix Q°(s) is now chosen as

Q°(s) = 0. (3.20)

It is not necessary to specify the nominal transfer matrix R°(s). However, in practice it will

generally be chosen to be compatible with Q°(s). For example, if R(s) is given by (3.15), then one

would choose

R°(s) = G(s)K(s). (3.21)

Likewise, if R(s) is given by (3.18), then one would choose

R°(s) = P(s). (3.22)

Let yo denote the output corresponding to the system (3.1) with Q(s) = QO(s) = 0 and

R(s) = R°(s). Then,
y°(s)= R°(s)v(s). (3.23)

Let e denote the deviation of the output from its nominal value, i.e.,

Ce(8) Y y(S) - yO(8). (3.24)

Then, subtracting (3.23) from (3.1) shows that e(s) satisfies

[I. + P(s)Q(s)]e(s) = x(s) (3.25)

where

X(s) A -P(s)Q(s)R°(s)v(s) + [R(s) - R0(sv(s). (3.26)

The input z has the partitioned form

T =[zT...,z T  
(3.27)

where xi e C'" .
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Definition 3.2. A nonnegative r-vector i(jw) function is said to be a performance bound of a

system (3.1) if for each Q(s) E Q and R(s) E R,

("w) -i(jw) for all w. (3.28)

The objective of the robust performance analysis is to find a nonconservative performance bound

(Mw).

The following theorem shows that system stability can be determined from behavior on the jw-

axis. The corollary to this theorem relates the objectives of the stability analysis and performance

analysis by showing that the system (3.1) is stable if and only if "(jw) is bounded.

Theorem 3.1. The system (3.1) is robustly stable if and only if for each Q(s) E Q

det [I, + P(jw)Q(jw)] 6 0 for all w. (3.29)

Proof. Define

H ([I" +P(S)Q(s)] : Q(8 E) . (3.30)

Since for each Q(s) e Q, P(s)Q(s) is stable and proper, each H(s) E H is also stable and proper

(i.e., H c Sn x). Also, the arcwise connectedness of Q implies that H is also arcwise connected.

Using the stability characterization (3.19) it follows that the system (3.1) is stable for each Q(s) E Q

and R(s) E R if and only if for each H(s) E H

det [H(s)] 6 0 for all a E C+ (3.31)

or equivalently, H(s) does not have any left half plane zeros. Now assume that (3.29) is satisfied

and there exists an Ho(s) E H that has a closed right half plane zero. The proof proceeds by

showing that this is a contradiction and thus (3.29) and (3.31) are equivalent.

From property P4 of the set Q, it follows that there exists an H"(s) E H that has a zero in

the open left hand plane. However, since H is arcwise connected there exists an H'(s) E H that

has a zero on the imaginary axis which (since H'(s) has no poles on the imaginary axis) implies

there exists Q'(s) E Q and w' E IR such that

det [I. + PUjw')Q'(Ij')] = 0. (3.32)

This contradicts (3.29) and thus the theorem is proved. "
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Since P(3), Q(s), R(s) and R 0 (s) are stable and proper transfer matrices or constant matrices,

they are bounded on the jw-axis. Thus, z(s) defined by (3.26) is also bounded on the jW-axis. The

next corollary results from this property of z(s).

Corollary 3.1. The system (3.1) is robustly stable if any only if there exists a nonnegative

n-vector function i(jw) such that for each Q(s) E Q and R(s) E R,

"a(jw) «5 5(jw) for all w. (3.33)

Proof. Since x(jw) is bounded for all w (3.25) indicates that (3.29) is satisfied if and only if

e(jw) is bounded for all w. 0

As mentioned previously, the objectives are not only to determine conditions for robust stability

but also to determine i satisfying (3.33). In the next section this problem is considered for a

particular uncertainty set Q.

4. Uncertainty with Norm Bounded Blocks

This section considers the case in which the uncertainty set Q is given by Q' where

Q' 4_ {Q(s) E S," : Ujw) < 1Ojw)} (4.1)

for some nonnegative r x r transfer-function matrix (jw). The block-structured uncertainty set Q'

satisfies properties P1-P4 of Section 3 and thus the results of the previous section apply. In fact,

it should be noted that Q' is not only arcwise connected but is also convex (which is a stronger

condition). This fact is used to facilitate the proof of Theorem 4.1.

Theorem 4.1, the main result of this section, is a multiloop small gain theorem and presents

a sufficient condition for robust stability and a performance bound i. This result is essentially a

frequency domain version of earlier results by Porter, Michel and Lasley [18,19]. If the nominal

matrix P(s) is block-diagonal, the first corollary shows that the robust stability condition of Theo-

rem 4.1 is actually nonconservative (i.e., necessary and sufficient). The results are also interpreted

in the context of systems with block-diagonal uncertainty matrices Q(s) and are shown to yield an

upper bound for the structured singular value.

Theorem 4.1. Suppose Q = Q'. Then, if

< 1 for all w, (4.2)



4

the system (3.1) is robustly stable. In this case a performance bound is given by i(-)(jW) where

i8())_ [I, - PuW"MMI C _'1-UCW) (4.3)

and i(jw) satisfies

• ( :i (jw). (4.4)

Proof. See Appendix A. 0

Now, consider the case in which P(s) is block-diagonal (i.e., P 3 (s) = 0 for i # j). This

restriction on P(s) can correspond to situations in which an interconnected system has well known

subsystem dynamics and uncertain interconnections. An example of this is the decentralized control

configuration of Figure 3.1. The following corollary shows that the robust stability condition of

Theorem 4.1 is actually a necessary and sufficient condition when P(s) is block-diagonal.

Corollary 4.1. Assume that P(s) is block-diagonal. Then the system (3.1) is robustly stable

for Q = Q' if and only if (4.2) is satisfied.

Proof. See Appendix B. 0

The next corollary considers the case in which (jw) in (4.1) is given by

w(jw) = (jw)I (4.5)

where

,(j) > 0 for all w. (4.6)

The problem of robust stability in this case is the block-diagonal perturbation problem considered

in [7,14,15,18] which motivated the develoment of the structured singular value.

Corollary 4.2. Assume that Q in (4.1) is given by (4.5). Then, if

p[P5(jw)] < -(j- ) for all w, (4.7)

the system (3.1) is robustly stable.

Proof. The proof follows by substituting (4.6) into (4.2). 0

Remark 4.1. Recognize that the performance bound (4.4) remains valid under the assumptions

of Corollaries 4.1 and 4.2.

10



Now recall that under the assumption of Corollary 4.2, the "small Au theorem" 1151 .states that

the system (3.1) is robustly stable if and only if

p[P1w)] < for all w (4.8)

where p(.) denotes the structured singular value [14,15].

An immediate consequence of the above discussion is then the following corollary.

Corollary 4.3. For w0 E IR
'[ P(j,.,.,o)] [_~ W (4.9)

Remark 4.2. If r = 2 and nj = n2 = 1, then as mentioned in [17] it can be shown that

p[Pjwo)] = p[P(jwo)]. (4.10)

Remark 4.3. An alternative proof of Corollary 4.3 is also available [25]. This proof is based

on the characterization of p(-) found in Theorem 1 of '14]. The proof then follows by using the

inequality

p(P(jwo)) p[Pjwo)] (4.11)

which is presented in Theorem 4 of [20]. (A simpler proof of (4.11) is presented in the Appendix

of [20].)

5. A Recursive Refinement of Robustness Results for Highly Structured Uncertainty

This section considers the robust stability of the system (3.1) for an uncertainty set Q" which

is more structured than the uncertainty set Q' of Section 4. Further discussion requires the intro-

duction of some additional notation and definitions.

Let m be some set of integer pairs

m C {(i,j) : 1 < i < r, i _j< r}. (5.1)

For each (i,j) E m let Wi,(jw) be an ni x nj transfer-function matrix. Also, for some r x r

nonnegative transfer-function matrix i(jw) let

Qt *_ {Q(s) E Q': for all w and (i,j) E m, (

Q'i(Jw ) =- Oj~jw)wijCJw), I j ju(jw) !<5 4,sCw)lllW, l..



Notice that

C Q1 (5.3)

If m is nonempty, Q" is said to be an uncertainty set containing patterned block-structured uncer-

tainty.

The set Q" satisfies properties P1-P4 of Section 3 and like Q' is convex. Since Q" Q

the robustness results of Theorem 4.1 apply with Q' = Q". However, (if n is nonempty) the

additional structural information associated with the uncertainty set Q" allows the development

of less conservative results. Below, we develop a recursive methodology to obtain robust stability

conditions and performance bounds. Each stage of the recursion yields robustness results which

can be significantly less conservative than the results of the previous step and are guaranteed to

never be more conservative.

The development of this section begins by showing that the robustness properties of the system

(3.1) can be determined by analyzing any one of a sequence of equations. First, for k E {O, 1,2,...)

consider the equation

(I, _ (_pQ)2h)e(k) = rij (I. + (_pQ)2m)lX (5.4)
M=O

where we use the convention -1

rj (I,. + (-PQ)2m) _ 1. (5.5)

and x is defined by (3.26). Also recognize that

k-1 2h-

rI (In + (-PQ) 2 ) =E (-PQ) for k = 1,2,... (5.6)
=O m=O

(Note that the argument a is implicit in (5.4)-(5.6)). An important theorem is now presented.

Theorem 5.1. Let k E {O, 1,2,...). Then the system (3.1) is robustly stable for Q = Q" if and

only if for each Q(s) E Q"

det [I - (- P(jw)Q(jW)) 2 ] 0 for all w. (5.7)

In this case, for each Q(s) E Q" and R(s) E R the error vector e(jw) which solves (3.25) is given

by

e(jW) = e()( jw) (5.8)
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where e(k)(jw) satisfies (5.4) with z(jw) given by (3.26).

m Poof. The proof is found in Appendix C and uses Lemma C which is also presented in

Appendix C. 0

Now for k E (0, 1, 2...} and each Q(s) E Q" and R(s) E R define

- T(k)(jw)- (-P(jw)Q(j))2 (5.9)

k-1

z(k)(jW)- [l (I. + T(-)(jW))]X(jW) (5.10)
m0

where r(jw) is given by (3.25). T(k and z(k) have the partitioned forms

T(k) - [T(;](ij..... ) (5.11)

(X(k))T = [czkh))T ... (Xk. (5.12)

where T-(k) E C"'× and xzh) E C"'. Now choose r x r T(k)(jw) and r dimensional 1(jw) such

that for each Q(s) E Q" and R(s) E R

"(*) jw) 55 Tf(h (jw) for all w (5.13)

z (jw) 5_ : (k)(jw) for all w. (5.14)

Notice thatN 
T(k+l)(jw) = [T(k)(jW)] 2  

(5.15)

X,(k+1)((jW) = (I. + Tk)(jw))x )(jw). (5.16)

It then follows from (5.19), (5.20) and the block norm inequalities (2.7)-(2.9) that it is always

possible to choose sequences {TPk)(jw)}" and {&(k)(y)} 0 such that

1(k+)(jW) = [t(k)(jw)]2  for all w (5.17)

(k+1) (jW)= [I,+ (k)c(jw)] (k)(jw) for all w. (5.18)

However, in general it is possible to choose the sequences {T(k)(jw)}_ 0 and { (k)(jw)} 0 such

that
t(,:+,)(jw) :5_5 [t (k)(jw)] 2  for all w (5.19)

(A:+ 1)C(,W) _5< [1, + t (k)(jw)])(;,(jw) for all w. (5.20)

13



This fact is illustrated by the following example. This example corresponds to considering a system

of the form (3.1) at a fixed frequency wo.

Examp~le 5.1. Suppose

P(jwo) =bloclc-diag{P1 (jwo), P2 (jWO)}

where

W (jWO)= [ 0i~ W12(jWO)]

whereIW2 
WO 0

W12(jWO) = 1~ 0] , W21 (jWO) = [0 01

Q(jO)" E {Q(jwo) EC": Q(jcwo) = fl(jwO)W(jwO), I P(jwo) 1:5 4(jwo)}

and

ZT'jWa) = [zTI(iWO), 4(jwo)].

where

zTX wo 2 110,4jo 0, 1].

Then for each Q(jwo) E Q(wa)"

T(0 )(jwo) =PQ(jwo) = -fl(jwo) I[PW21(.U) 0 -2 Iw)

T(1) (jwo) = -[pQ(jWo)] 2 =_-4UWo) 2 [hWl21. 2W21UjW0  0~~p~i(w)

and

X(0)(jWO) = XjWO) X2 [iWO)]

.T(1) (jwo) = 14 + T(O) (jwo)] x(') (jwo) [X1(iwo)] (jwo) PI1X("0

Choose

P o( w)= w(wo) 0 1

14



This is the smallest possible choice of T(°)(jwo) in the sense that there exists Q(jwo) E Q(wo)"

such that T.(°(jwo) = (°)(jwo). Noticing that W 12 P2 (jwo) = W 2 iPl(jwo) = 0 it is possible to

choose

(1 )(jwo) = 0 << [(°)(jwo)] = 4(jWo) 212

Now choose

- £(°)(1( ) [ I
This is obviously the smallest possible choice of i(o) (jwo) since l( 0 ) (jwo) = (0) (jwo). Now notice

that PiW12zI(jWo) = P2 W 2 1 z 2 (jwo) = 0. Thus it is possible to choose

i(I)(jW0) = i(°)(jWo) << (I + (O))(jWo)i(O)(jwo) = (1 + 4(jwo)) .0

The main results of this section are now presented below in Theorem 5.2 and Corollary 5.1.

Theorem 5.2 provides a sufficient condition for robust stability while Corollary 5.1 provides the

foundation of a recursive methodology for obtaining less conservative bounds.

Theorem 5.2. Suppose Q = Q" and consider any k E {0, 1, 2,...}. Then, if

p[i(k)(jw)] < 1 for all w, (5.21)

the system (3.1) is robustly stable. In this case, a performance bound is given by i(k)(jW) where

(j) A [I, - -( )(w)]-&(k)(jw). (5.22)

Proof. The proof of this theorem depends upon Theorem 5.1 and is essentially identical to the

proof of Theorem 4.1 found in Appendix A. 0

Corollary 5.1. Suppose Q = Q" and the sequences {T(k)(jw) }= and {&()(j)} 0 satisfy

(5.19) and (5.20). Then, if for some rn E {O,1,2,...}

P[T(")("w)] < 1 for all w, (5.23)

the system (3.1) is robustly stable. In this case, for any k > m

p[Dk)('w)] < 1 for all w (5.24)

and i(k)(jw) defined by (5.22) is a performance bound. In addition

i(k+l)(jw) :5__ (k)(jW) for all w. (5.25)
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Proof. The inequatity (5.24) is a direct consequence of (5.21) and (5.19). That i(k)(jw) is a

performance bou- I then follows immediately from Theorem 5.2.

Now i(k)(jw) satisfies

[I, - T1 (k'&,)] ()"w) = (k)(jw,). (5.26)

Premultiplying (5.26) by the invertible matrix [i, + T(k)(jw)] and rearranging gives

, ~)..,) = [j;(k)(jw)] 2 , ,)(jw) + [I, + T(,€)(.w)]j c,)(j.). (5.27)

It then follows from (5.19) and (5.20) that

i(k)j > ;(4k+l)(jW)Ck) (jw) + i k+(jw) (5.28)

Thus, there exists E E IR such that

I ) =,(+1)(-,,,)(()(,,) + &(',+1)(jW) + e. (5.29)

Next notice that

i(k+1)(jW) = 1;(k+1)(jW)(h+t)(jW) + .(k+1)(.w). (5.30)

Subtracting (5.30) from (5.29) and rearranging yields

[(k)(jw) - i(k+C)(jW)] = [r - (k+1)(jw)]-19. (5.31)

It follows from (5.24) that [I, - T '(+(jw)] is an M-matrix and thus

[I r -1(k+1) "1w)] >> 0 for all w. (5.32)

The inequality (5.25) follows from (5.31) and (5.32). 0

Remark 5.1. If (5.23) is satisfied, then since the sequence {()(j)}= is bounded below

by the zero vector and is monotonically nonincreasing (i.e., it satisfies (5.25)), it is guaranteed to

converge.

Remark 5.2. Recognize that the calculation of successive members of the sequences
{1(k)(jw)}O and {()(j)} =0 is increasingly complex.

Remark 5.3. It is always possible to choose T(°)(jw) and !( 0 )(jw) such that

i(o)(j) _< -)(jw) for all w (5.33)

where i(-)(jw) is the bound defined by (4.4).

Corollary 5.1 is the basis of the following recursive algorithm for the analysis of robust stability

and performance.
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Recursive Algorithm for Robustness Analysis

This algorithm assumes that for some p E {0, 1,2.. .} the sequence {T(Dk)(jw)} satisfies (5.21)

for k > p.

Step 1: Initialize m = 0.

Step 2: Determine if T()(jw) satisfies (5.28).

Step 3: If T(m)(jw) satisfies (5.28) go to Step 4. If T(m)(jw) does not satisfy (5.28) and m < p, then

let m +- m + 1 and go to Step 2. If T(m)(jw) does not satisfy (5.28) and m = p then stability

cannot be guaranteed and the algorithm stops.

Step 4: Let k = m.

Step 5: Compute the performance bound i(k)(jw). If the bound is close (or equal) to the limit of the

sequence {iCk) (jw) , m or is satisfactory in some other sense considered by the analyst, then

stop. Otherwise go to Step 6.

Step 6: Let k + k + 1 and go to Step 5.

6. An Illustrative Example

Consider the configuration of Figure 6.1 which describes two oscillators with uncertain coupling.

This system can be described by (3.1) with

Y =8 [YT(s), !4'(S)](61

VT= [v(, v(s)] (6.2)

R(s) = P(s) P, [Ps) P0) (6.3)

Q(s)= Q21(s) ) " (

Notice also that
1 [8+ i,1  fl,

P (s3+),)2+ -n s+ v," (6.5)

The nominal output y' (corresponding to Q°(s) = 0) is given by

y*(s) = Ps)v(s). (6.6)

17



- . ..I I .. ... . . ... . ... .. __i_ a_ _ _ _ _ . .. .. .

In addition, the error vector

e(S) - (s) - Yo(s) (6.7)

is given by

[1A + P(s)Q(s)Je(s) = X(s) (6.8)

where

X(s) = -P(8)Q(s)P(S)V(s) (6.9)

or equivalently

z(s) -(s) Pl(S)Q12(S)P2(8) 2(8) (6.10)

Now let

00

where a

412(W)= ( OA ) (6.12)rW2nA

421(W) = a fri ) (6.13)

Also, let Q be given by Q' where

Q' = {Q(8) E S4 I X (jw) 4)?(jw)}. (6.14)

Subsequent results consider the case

VI = t2 0.005 (6.15)

01 = 1.0, f12 = 10.0 (6.16)

fnA = 2s = 5.0 (6.17)

v(jW) = 4(jw) = [0 1]. (6.18)

Standard singular value analysis assures stability if

j(P(jw))L(w) < 1 for all w (6.19)

where 4

L(w) = max {412 (W), 42 1 (w)}. (6.20)
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For the case under consideration the condition (6.19) is satisfied only for

a < 0.0051. (6.21)

However, the stability condition of Corollary 4.1 shows that the system is actually stable if and

only if <0.428. (6.22)

comparing (6.21) and (6.22) demonstrates the conservatism sometimes inherent in singular value

analysis.

Figure 6.2 shows a plot of IIiY°(jw)I 2 and IlIY°(jw)I12 versus w. For or = 0.3 Figures 6.3 and 6.4

show plots of i(-)(jw) and (-)(jw) respectively versus w, computed using (4.3) with

;iT(jw) = [iT(jw), :i'(jw)] (6.23)

where

.i(jW) = ljP )J)S , 2(W)liP2 (jW)V2 jI 2  (6.24)

* i2(j,-,) = IP2(W.i)JIS 2 (w)IIPI (jW)V11. . (6.25)

The latter plots shows the possible performance degradation in the outputs yj and Y2 due to the

system uncertainty.

Now assume that the patterns of the subblocks of Q(s) are known in addition to bounds on

the norms of the subblocks. In particular let W12 and W 21 be the constant matrices

W12 j[ _j ] (6.26)

w 2 1 ~[ ~'](6.27)

and notice that

IIW1211. = IIW2,,ll = 1. (6.28)

Now, let Q be given by QE where

Q" = {Q(,) E Q : for all W,Q12 (jw) = 612(W)W12,
Q 21(jW) = fli2 (W)W2 , G 2(W) 1j6 Y2(W), I IR21(W) I< 421(W) (6.29)

and 41 2 (w) and 421(w) are defined by (6.12) and (6.13).
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Now, notice that

T()(jw) =-P(jw)Q'jw)=- [ 2 q 12 (Iw), (6.30)

= 0 - PQ 0 PQ ] (jw), (6.31)
- =co()(jwo) = x(1,w),. P2 Q PI Q12 (jW)

(l)"w) = [I+ T()(jw)]x(jw) = zUw) + [P2Q21PQ 12 P2V2  (jW) (6.32)

Choose D€O) (jw), t()(jw), i(O)(j),()(jw) as

([)c(j.,, () ft10)] (6.33)

where

t 102)(jW) = 412(W)IIPI WI2IIs jw) (6.34)

i(o) (jW) = 61 (W)IIP 2 W21 11 s (W); (6.35)

( 1 U ) A l I)'W) 4 ) (6 .3 6 ) .
where

tl (jw) = 41242 1(U))lPzIW12P2W21jIs(jW) (6.37)

)21 (i,.w) = 2 ll 2 (W)llP 2W2 lPIWI2 js(jw); (6.38)
where = [o(iw)] (6.39)

=1 *( ) UwrI) (6.40)where
i'o) (jW) =12 (W.) II P1 WI P2, V211 U) (6.40)

=( 0)(j) + 42 ()IP 2W 2 P VII2(j v(); (6.41)

:i(l)(jw) - 1 w) (6.42)

where
(1) (jW) =-: (0)(j,,) 421412 (,W) I I W2 IPiW1pu 2 AV 11(UJo) (6.43)

i'2 )(jw) = & 0)(jw) + 412421(w) LIP1 Q 2 P2W21PIvi112(jw). (6.44)

For k = 0, the robust stability condition of Theorem 5.2 shows that the system is stable for 4

a < 0.470 (6.45)
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which describes a larger stability region than (6.22). For k = 1, the robust stability condition of

* Theorem 5.2 shows that the system is stable for

oa < 1.5 x 105 (6.46)

which is a much less conservative result! Since for this example for k E {2,3,...} one must choose

> [for all w,

(6.46) describes the largest stability region which can be obtained by the recursive algorithm of

Section 5.

Figure 6.3 shows plots of i 0 )(jw) and i1 )(jw) vs. w, computed using (5.27) with k = 0.

Likewise, Figure 6.4 shows plots of i(0 C(jw) and 4 1 )(jw) vs. w, computed using (5.27) with k = 1.

As insured by the theory

1 1 )(jw) for all w (6.47)

W)(jw) _4o)(jw) for all w. (6.48)
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Summary

This paper has used the theory of nonnegative and M-matrices to develop robust stability and

performance results for two types of uncertainty characterizations. Performance was measured in

terms of the deviations of the system outputs from their nominal values. For uncertainty with norm

bounded subblocks the development led to a frequency dependent multi-loop small gain theorem.

The stability result was shown to be necesary and sufficient when the nominal transfer matrix

P(s) is block-diagonal. For uncertainty that has subblocks with known patterns the developments

led to a recursive methodology which is guaranteed to yield increasingly nonconservative results.

The results were illustrated by considering two oscillators with uncertain coupiings. The fre-

quency dependent multi-loop small gain theorem was shown to yield much less conservative results

than standard singular value analysis. However, for a given case in which the patterns of the un-

certain coupling blocks were assumed to be known the recursive analysis methodology yielded a

stability region over 5 orders of magnitude greater than that obtained by using the multiloop small

gain theorem. The recursive methodology also yielded better (i.e., smaller) bounds on the output

perturbations, a result guaranteed by the theory.
I
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Appendix A

Proof of Theorem 4.1. First recognize that since Q -

< for all w. (A.1)

Ma

(Here the block norm inequality (2.8) has been used.) Now assume that the system (3.1) is robustly

stable for some Q E Q'. Then the corresponding output perturbation eQ is bounded on the

imaginary axis and satisfies

eQ = PQCQ + Z for all w. (A.2)

It follows by using (A.1), (4.4) and the block norm inequalities (2.8) and (2.9) that

7Q :5 PQEQ + 1 for all w (A.3)

or equivalently

(I, - 15()7Q «__< 1 for all w. (A.4)

If p(-P) < 1 (i.e., I, - P5Q is an M-matrix) for all w, then (14 - E IRxr for all w.

Premultiplying (A.4) by (1, - T)- 1 then gives

EQ :55 i for all w (A.5)

where i is the solution of
= - PQ-I .(A.6)

Next assume that (Ir - PQ) is an M-matrix for all w and that the system (3.1) is not robustly

stable. Recognize that for w. E IR I det[I, + P(jwo)Q(jwo)]I is a continuous function of Q. Define

f(Q) t inf Idet(I, + PQ)f. (A.7)

The function f(Q) is also continuous in Q. In addition, the system (3.1) is stable for Q E Q' if and

only if f(Q) > 0. Now there always exist a neighborhood in Q' of Q = 0 such that for each Q in

the neighborhood, f(Q) > 0. Since Q' is convex, there exist Qo E Q' such that f(pQo) > 0 for

pLE [0,1) and f(Qo) = 0. It follows that for p E [0,1)

,Q. _ for all w (A.8)
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and there exists w. E IR such that

lim, det (I, + uP (j. 0 ) Q(jw,)] 0. (A.9)

The limit (A.9) implies that

Urn IleCsQ. UW.) 11 (A.10)

which implies there exists pos E [0, 1) such that

IICEMQ* (iW-)II : PIUW.)II. (A.ll)

This contradicts (A.8) and ends the proof. 0
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Appendix B

Proof of Corollary 4.1. The sufficiency of (4.2) for robust stability is guaranteed by Theorem

4.1. So assume that for some w0 E IR

P[-P(jwo)] - a > 1. (B.1)

It will be shown that there exist Q(.) E Q' such that

p[P(jWo)Q(jwo)] = 1. (B.2)

First recognize that since (B.2) implies that

det [I - PUjWo), (jwo)] = 0, (B.3)

it also implies that the system (3.1) is unstable for Q(s) = (s).

Now let

P = P(jWO) (B.4)

fl = Q(jwo) (B.5)

fl = {fl E nxn : ?j:5_5 l}. (B.6)

Here it is assumed that each fl e fl has the partitioned form

fl = [fyJ(,,=l ..... (B.7)

where fly E C"' x"n. Since P(s) is block-diagonal,

P = block-diag{P,..., P,} (B.8)

where P, E C" 'n,. Also, in the new notation (B.2) is equivalent to

pi'l I= cx. (B.9)

Now for each 2 E fl there exist a Q(s) E Q such that Q(jwo) = 02. Thus, it suffices to complete

the proof by showing that there exist D2 E fl such that

p(P12) = 1. (B.10)
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For each fl E fl, P11 is given by

Pn-- [(Pfn),,],, 1 . .) (B.11)

where

(Pf=)ij Pifli. (B.12)

Let the singular value decompositions of the diagonal blocks of P be given by

P,=EEFH, i=l,...,r (B.13)

where

(Ejli = IlPil.. (B.14)

Now choose fl such that its block partitions have the singular value decompositions

fOj = F' qEj, i~=1..r(B. 15)

where

(A,,) 1  = nil. (B.16)

Clearly, fl E fl and

f- fl (B.17)

In addition,

(Pfl),j = EfAjjE, i,j - 1,... (B.18)

which implies

('P) = Th (B.19)

Next, let
21 fl. (B.20)

Recognize that 17 E f) and the block partitions of P17 have the singular value decompositions

(P2),, E.- A,,iE,, ,,j= 1,..., (B.21)

where

(A,,)l 1 = P1 1 f;. (B.22)
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It follows that
(--) = 77 -Tel. (B.23)

It is easily seen from (B.9) and (B.23) that

p(2)- =1 (B.24)

Define the unitary matrix U E C" x" by

U = block-diag{E,..., E,} (B.25)

and let V be given by

V = U"(Pn)U. (B.26)

Note that W is an n x n ncnnegative matrix and has the partitioned form

= I . .... (B.27)

In addition,

'W =7i (B.28)

and thus

p() = 1. (B.29)

Let u E IRr. be the eigenvector of"W corresponding to the Perron root (p( ') = 1). Then,

WU = U. (B.30)

Now define u E IRL by
[PI = .[.,... Ur'] (B.31)

where pi E IR.i is given by

pT = [u1 0...]. (B.32)

(Here ui is the ith element of u). Then,

VIA = A. (B.33)

To see this, recall that V is given by (B.27) and notice that:

(i) If nj !5 nj,

= [A, ° . 01 (B.34)
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where A9. - E IRldx~ is diagonal and
13 +

(A9,.) 11 = . (B.35)

(ii) If nj > n,

A1  [Aoi] (B.36)

where A, E IR? nxnj is diagonal and

(AP ~ (B.37)

It follows from (B.26) and (B.33) that

Pf1) =P(V) L 1 (B.38)

Thus, the corollary is proved. Cl
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Appendix C

This Appendix presents and proves Lemma C and then presents a proof of Theorem 5.1.

Lemma C. Consider any k E {1,2,3..., }. Then, the system (3.1) is robustly stable for Q -

if and only if for each Q(s) E Q"

p[(p(jw)QiJ))k] < 1 for all w. (C.1)

Proof. Suppose (C.1) holds for each Q(s) E Q". Then

p[P(jw)Q(jw)] < 1 for all w (C.2)

which implies that

det (I+ P(jw)Q(jw)] 6 0 for all w. (C.3)

Theorem 3.1 then guarantees that the system is robustly stable.

Now suppose that for some w E IR and Q(s) E Q7"

P[(P>_w)Q(.w))k] = Qk > 1. (C.4)

This implies that for some 0 E IR an eigenvalue of P(jw)Q(jw) is given by

A[P(jw)Q(jw)] -- exp(C) (C.5)

where c > 1.

Next define
-1

9(B) = -- exp(-O)Q(s). (C.6)

Clearly, c(s) E Q" and there exist an eigenvalue of P(js)Q(jw) given by

A [P(jw)Q(jw)] = -1. (C.7)

Thus,

det [I + P(jw)Q(jw)] - 0 (C.8)

and by Theorem 3.1 the system is not robustly stable. 0
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Proof of Theorem 5.1. First it is shown that for each Q(s) E Q"

det [I. - (- P(jW)Q(W)) 2 '] # 0 for all w (C.9) e

if an only if for each Q(s) E Q"

p[(P(iw)Qiw)) 2] < 1 for all w (C.10)

which by Lemma C is a necessary and sufficient condition for robust stability.

It is obvious that if (C.10) is satisfied for each Q(s) E Q", then (C.9) is satisfied for each

Q(s) E Q". So assume that there exist Q°(s) E Q" and wo E IR such that

p[(P ]jwo)Qo(.wo))2h] = > 1. (C.11)

Then for some e E IR an eigenvalue of (P(jwo)QO(jwo))2' is given by

[(P(jWo)QO(jWo))2k] = exp(O). (C.12)

Now, let

(5(s) = (-1) 1 exp(-e)Q(s). (C.13)
.k I

Clearly, (s) E Q and there exist an eigenvalue of (P(jWo) (jwO))2k given by

\[(P iWO)Q iWO)) = (_1)2" (C.14)

which implies

det [I. - P(jwo)&(jo))] = 0. (C.15)

The proof is completed by showing that if the system is robustly stable, then for each Q(s) E Q
and R(s) E R

e(jw) = e• )(jW). (C.16)

So assume that the system (3.1) is robustly stable and consider Q(s) E Q" and R(s) E R. Then

e(jw) is the unique solution

[I. + P(jW)Q(jW)]e(jW) = zUW) (C. 17)

where x(jw) is obtained from (3.26). Also, let

k€-3e, (,,) = -[(I., + ( W (j,, WO,)) 2- (C. 18)
,n=O
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rQ(jw) =,eQ(iw)( -i. + P(jw)Q(iw)].(19

3 It is easily shown by induction that

rQ(jw) =i,, - (-P(jw,)Q(jw)). (0.20)

Since the system is robustly stable, (0.9) insures that

det [E)Q(jw)] :0 0 for all w. (C. 21)

Then, premultiplying (0.18) by e)Q(jw) and using (0.17) by E)Q(jw) and using (0.19) shows that

rQ(jw)e(jw) = E)Q(jw)x(jw). (0.22)

Finally, using (0.18) and (0.19) and comparing (0.22) and (5.8) shows that (0.16) holds. 0
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4. Tousuff and Skelton [5j: This is a
Abstract further modification of balancing for

am handling stable or unstable controllers

Six methods for design of 
reduced-order

compensation are compared using an example problem 5. Liu and Anderson (I): In place of using
given by Enna. The methods considered comprise a balanced approximation of the
five LQG reduction techniques, reviewed in a compensator transfer function directly.
recent paper by Liu and Anderson. and the Optimal this method approximates the component
Projection theory as implemented via a simple parts of a fractional representation of
homotopy solution algorithm. Design results the compensator.
obtained by the different methods for forty-two
different design cases are compared with respect All of the above methods proceed by first
to closed-loop stability and transient response obtaining the full-order LQG compensator design
characteristics. Of the LQG-reduction procedures for a high-order state-space model and then
two are found to offer distinctly superior reducing the dimension of this LQG compensator.
performance. However, only the Optimal Projection
method provided stable designs in all cases. The present paper complements the results of
Further details are given on the performance of Liu and Anderson by giving a numerical comparison
the numerical algorithm for solving the optimal (again using Enns' example) of methods 1-5 with a
projection equations and the corresponding design sixth method:
results.

6. Optimal Projection (OP) equatioms [6]:
1. Introduction Reduced-order compensator design by

direct solution of the necessary

The design of reduced-order dynamic conditions for quadratically optimal
controllers for high-order systems is of fixed-order dynamic compensation.
considerable importance for applications involving
large spacecraft and flexible flight systems. Method (6). like methods (1-5), has been
Hence it is not surprising that extensive research shown to have intimate connections with balancing
has been devoted to this area. A recent paper by ideas [7]. Moreover. the first step in one
Liu and Anderson W1] subjected five reduced-order iterative method for solution of the OP equations
controller design methods to both theoretical and is almost identical to method (4). Method (6)
numerical comparison. The computational differs from the other methods, however in that it

* comparison was based upon an example problem does not reduce the order of a previously obtained
considered by Enna [2]. The five methods compared LQG design but rather directly characterizes the
in [1] are: quadratically optimal compensator of a given

fixed-order. The OP equations constitute four
1. Method of Enns [2]: This method is a coupled modified Riccati and Lyapunov equations

frequency-weighted, balanced realization wherein the steps of regulator design, observer
technique applicable to either model or design and order reduction are completely and
controll er reduction inseparably intermingled.

2. Method of Glover 13]: This method The organization of this paper is as follows.
utilizes the theory of Hankel norm In section 2. we state the problem considered and
optional approximation for controller review the OP design equwtions. Section 3 gives
reduction the computational algorithm used herein for OF

design synthesis. Finally. section 4 sets forth
3. Davis and Skelton [4]: This is a the example problem of inns and compares the

modification of compensator reduction via results of all six methods obtained for this
balancing which covers the case of example.
unstable controllers

2. Problem Statement and Review of
OP Design Equations

*This research was supported in part by the Air Here we consider the linear, finite-

Force Office Of Scientific Research. contract dimensional, time-invariant system:
APOSR F49620-84-C-0038.

**Technical Stiff, Control Systems Engineering x + Ax + Bu w v 1 ; x £ RN.

Group (1)

tLeader. Control Systems Engineering Group 
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where x is the plant state. A is the plant Le 1. Suppose QRR and PR N  
are

dynamics matrix and B and C are control input and

sensor output matrices, respectively. w1 is a nonnegative definite and rank (OJ rank (1) =

white disturbance noise with intensity matrix rank (QP). Then the product QP is semisimple (all
V, > 0 and w2 is observation noise with Jordan blocks are of order unity) with real. non-

nonsingular intensity V2 > 0. negative eigenvalues. Moreover. there exists a

nonsingular *IQ.P] such that:

The reduced-order compensation problem 2
consists in designing a constant gain dynamic EQ.P]QP*(Q.P]= A (4a)
compensator of order N < N:

* [Q.P]P*[Q.P1 A (4b)

(2)
N Q Q* IQ.P] a A (4c)

A cq + F; q CR'€ where

Obviously. the heart of the design problem is the A = dieg (A k)
selection of the constant matrices K. F and A . kl... NC

Methods 1-6 all associate with the closed- is the positive diagonal matrix of the square
loop system (1.2) a steady-state quadratic roots of the eigenvalues of
performance index. J:

ha When for a given pair QandP.a
t -t0->" exists such that (4) hold. Q and P are said to be

contragrediently diaponalizable and balanced [91

t1  and *[Q.Pi constitutes a simultaneous
T E +T ontragradient transformation. Determination of

J Jdt L~x U(32 u] such a transformation is the fundamental

to mathematical operation of balancing.

R, 0. R 2  0 Furthermore, it is clear that the quantities:

Methods 1-5 first design an LQG compensator k
(select K. F. A to minimize J ) and then reduce (6)

the order of the resulting N state compensator. E(k) - 2 1; mn=k
Thus, in methods 1-5. the quadratic performance mn O; otherise
(3) is brought into play in the initial LQG design
step. but a variety of balancing and Hankel norm form a set of mutually disjoint unit rank
approximation ideas are utilized for the projections i.e.:
subsequent compensator-order reduction step. In
contrast, method 6 selects. K. F. A by addressing

the quadratically optimal, fixed-order n k[QPIlj [Q.P] a n k[Q' 6 kj; 7

compensation prob!m i.e., for Nc fixed (and < N).
choose K. F. Ac to minimize J.. The OP design

methodology proceeds by solving the first-order projection of rank r. Also QP can be
necessary conditions for this optimization problem alternatively expressed as:
using the new forms for the necessary conditions
given in [6]. The basic OP design equations a
reduce to four modified Lyapunov and Riccati QP = L=k(QPIA (8)
equations all coupled by a projection of rank N c-. k

In general these design equations produce
compensators that cannot be obtained by reduction By virtue of (8) and the usage in (101. we term
of an LQG compensato [71. k[;;] the eiaen-proection of QP associated with

Methods 1-5 have been reviewed extensively in the kt h eigenvalue.
[1-5]. and will not be discussed in detail. Here

we shall merely review the OP design equations to The above results and conventions, together
the extent needed to illustrate the solution with the notations:
algorithm used for this study.

To do this. a few preliminary results and BR: B1RB T  (9a)
notational conventions must be given. First. we
have Lemma, 1. [7]:

= v 2c (9b)

2



r i a In- r (9) -LT

I~~ ' R2 F
allow us to state the main result [6-8 upon which T-()
the OP reduced-order compensator design method is F - QC V2  (14)

based: ~ K

pmTheorem 1. Consider rho quadratically
optimal, fixed-order compensation problem with
N c< N fixed, with Q and P given as solutions to the independent

Riccati equations. (lOa.lOb). with T= 0. Hence
when N c a N. the design equations (10). (11) and

Let nonnegative definite Q. P. Q. P cR k be (12) immediately reduce to the LQG design for a
determined as solutions to the following full-order compensator.
equat ions:eu n 

However for N c N. equations (10) are first-

+QA + VI - Q EQ + rQ QT  (10A) order necessary conditions and generally possess
multiple solutions corresponding to multiple
extremals that can exist. This matter was

0 = ATP + PA + R - P'P + 7TPEPr (lOb) explored in [11] relative to the related
quadratically optimal model reduction problem.

T Basically. equation (10) tells us that the rank
0 = (A-_P)Q 4 Q(A-EP) + QZQ - TQEQr (Oc) N projection. T. which defines the geometry of

' - the fixed-order compensator, is the im of N out
O (A-Q) P +P(A-QE) + P P - i*PEPT (l0d)..

of N eigenprojections of QP. However. the
Nc  necessary conditions do not tell us which N out

r a f l.QP] (10e) of N eigenprojections are to be selected to secure

Kal a global minimum of J. Indeed for any possible
selection of N¢ eigenprojections out of N.

N xN equations (10) may possess a solution
Then with r, G f R c given by: corresponding to a local extremal. By virtue of

(10e) and the notational conventions of (4) end

r = [N' .O Q.P] (8). the selection of Nc eigenprojection is
r i c defined (generically) by the manner in which the

(11) elgenvalues. Ak. are ordered. Recently. Richter

G [IN .o]0*[QoP] [12] has applied topological degree theory to
c investigate the possible solution branches and the

character of the associated extreme and has
the gains: devised a homotopy solution algorithm which

selects the A-ordering which homotopically

K R1BTPG
T  converges to the global minimum.*--2

For the example considered in this paper, we

F McTV-l (12) adopt the ordering convention:

A Iaf QE. p)GT  A 1 - A 2 ±..- AN (15)C
in constructing *[Q.Pi. (15) together with (10a)

determine an extremal of the performance index J. imply that T is taken to be the sum of the N
C

As has been remarked in [8]. the value of the eigenprojections corresponding to the N€ largest
performance index is unchanged by any
transformation of the compensator state basis - in eigenvaluee of Q;. Generically, this choice leads

otr oto an unequivocal choice of one solution branch of
other words. for any nonsingular S c R : (10) corresponding to a particular extremal.

J(K.A J(KS.S- F.S S) (13) Thus, the OP design method investigated here

c A consists in solving (10) with convention (15) and

then evaluating the gains according to (12). We
Furthermore. when Nc a. T is a rank N apply a simple homotopy solution algorithm.

N described in the next section. to the example
projection on R by virtue of (10s). Hence T IN problem of Enns specified in Section 4 and compare

and rI a 0 and equations (10a).(lOb) become results with methods 1-5. A more advanced and

uncoupled Riccati equations for determination of Q efficient homotopy algorithm is given in [121.

-1 1, Tand P. Also r and G become *- Q.?] and * EQ.?].

Finally. setting S a t-1 and using (13) and (12).
extremalising gains are given by:

:3



3. An Alsorithm for Solution of the F
OP Design Equations 115Le 1 Zoner Loop of 0? Solution Alsoritbm

As stated, the OP design method is to solve

(10) (with stipulation (15)) for P. Q. P. Q. and
then evaluate the gains using (11). (12). A
logically distinct issue is precisely how- Compute Q. P. Q. P ) 0
equations (10) are to be solved. Here we present -T #
an algorithm that has been used for some time and 0 F. Q + QTIQ-QrT
requires only a standard LQG software package for 0 T * t - PEP + CT.r
its implementation. For convenience this same
algorithm was employed to obtain the numerical 0 = (A_ -) Q(AQ & TQEQT

results for method 6 presented in the next
section. 0 (A-QE) T; * ;(A-Ql:) + PEP -W P

The basic aotivation of this algorithm is the
observation that the four main equations (10)- UwoT9
(lOd) are coupled only via the terms involving 7,
on the right hand sides. If these 7i terms were . Q.

deleted, then all five equations can be solved

sequentially - moreover (10&). (10b) reduce to * -1 ,- -1A

ordinary Riccati equations nd (10a). (10b) are
Lyapunv equations. Likewise under conditions in A , ~1,(...Au; A ' Ai
which QZQ and PZP are "small" relative to the Assemble T:
remaining terms (e.g.. sufficiently small state-
weighting and disturbance noise intensity and/or
sufficiently large control weighting and . diq(?.
observation noise intensity) the TI terms are I V
typically found to have little effect. In this ,'

!

situation the artiface of fixing an initial TIN A /A
and then solving (10) as ordinary Riccati and k/WC; 9 >N
Lyapunov equations is likely to give a reasonable
approximation to the true solution.

Mo. No. of Iteraticn
Since only the TI terms on the right of (10a- no

10d) occasion most of the difficulties, it is
necessary to somehow bring these terms into play ( (tr(rN WK I C? YES
gradually. There are two principal ways to do
this. The first is an iterative relaxation
approach. i.e.. fix rL. solve (lO)-(lOd) Compute r.c
sequentially, then update r using (lOs) and repat Compute K PA
until convergence. in some sense., is achieved. Compte J(...€A)
The second method is a homotopy approach. i.e..
multiply the 'ri terms by a scalar parameter,
o £ (0.1]. then starting with a - 0 and gradually tigenprojection is weighted by Ar/AN < 1. As
incrementing a, solve (10) repeatedly until a a 1. c

€onvergence proceeds. A/A aprIhszr o
The algorithm used here consists of two r AN approaches zero for

iterative loops. The inner loop uses the all r > N and the numerical rank of T approache
relaxation approach and is embedded within an c
outer loop which implements the simple homotopy N c. The indicated convergence check tests the
approach. relative excess of the numerical rank of T over Nc

The inner loop follows the earlier and terminates the inner loop iterations when this
computational scheme discussed in [7] and is "rank excess' falls below tolerance e. In these

illustrated in Figure 1. Note that the parameter studies C = 0.1 is used. The inner loop is

a [0.1] multiplies the Tl terms but is held fixed terminated when either this tolerance is achieved
within the inner loop and is only incremented on or when the prescribed number of iterations is

the outer loop. As Figure 1 shows, one first exceeded.
fixes T equal to the previous iterate (or set fWhen the convergence criterion is satisfied.
T a IN when starting) and then solves (10a)- the gains. K. T. A are computed using (11) and

(ld). Once now iterates for Q, P, Q, P are (12) and the steady-state performance. J. is

obtained. T is updated by determining the evaluated. Performance evaluation icvokes no
- - assumptions regarding the convergence and

balancing transformation *(QP]. To enhance optimality of the solutions to (10).
convergence of the modified Riccati equations, the Specifically. the values of K, 1. A resulting
updated 7 is taken to be the weighted sun of all N c

sigenprojections - the first N *igenprojectiona from application of (12) are accepted as they
c stand and are used to construct the system

are given unity weight while the r t h 
(r > N) matrices of the augmented system with state vector

XT a [zT qT]. Next the N+N 0 z N+Nc Lyspunov
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eqution for the second mom.ent matrixz of the 4. A Design Example and Comparison of Resul ts

augmkented. clood-lop system is solved. Finally.

J is evaluated as a linear function of various We use the example problem given by Enns' [2]
sub-blocks of the augnented system second moment to compare methods 1-6. Rtesults on this example
matrix. obtained by use of methods 1-5 are discussed in

The ute lop. epiced n Fgur 2.(1]. Here. we augment these results by

houter loop, depicted in Figure , considering method 6 and undertake an overall
-pl--ents the homotopy approach by incrementiag a comparison.

and controlling the increment step size. Only at
the inner loop initialed by = .  The plant to be controlled in this example is

Otherise. when a is incrmented. the inner loop a tour-disk system and is linear, time-invariant.
i i SISO. neutrally stable (with a double pole at the

initialized using P, Q, P, Q, and ' as obtained origin) and non-minim m phase and of eighth order.
with the previous value of a. a is taken to be 0 Numerical values of the matrices A. B. C. Rl . R
at the start and is subsequently incremented by m. 2 ,

- The default value of A is 0.1 although other Via V2 defining this problem are given in Table 1.
desired values may be input. However. whenever
the inner loop is terminated without achieving the
convergence tolerance C. the hoaotopy parameter
increment. A. is halved. This provides simple
control over the homotopy step size. The entire -0.161 1 0 0 0 a 0 a
algorithm terminates when o = 1.0. Alternatively. -6.004 0 1 0 0 o 0 0
at the user's option, the algorithm can be
terminated when the change of the performance -o.58-2 o o 1 0 0 0 0

index, J. over two successive outer loop -9.9835 0 0 a 1 0 o 0
iterations is sufficiently mall - thus indicating A
acceptable convergence with respect to quadratic -0.4073 0 0 0 0 1 0 0
performance. -3.92 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

T 
.0. 0. 0.0064. .00235. 0.0713. 1.0002. 0.10S. 0.9955

DOW _LO0 IFigure I C - l. 0. 0. 0. 0. 0. 0. 0)

I _ (1.0 & lO" )TU; V - [0. 0. 0. 0. 0.55. It. 1.32. 18.0

aI

S(tr( r) - )I'/M C e T-i--s V q 2 35
T  

(2 [0.01. 2000.01)~V 2 - 1V I

no

-Table 1: Data Matrices for the Zaample Problem of 3s 12)

For each of the methods 1-6. controllers of

different reduced orders (from seventh to second
a order) were obtained for seven different values of

the disturbance noise intensity parametor. q2 :

q 2 = 0.01. 0.1. 1.0, 10. 100. 1000. 2000

0 < 1.0 SToP Thus each method was used to obtain results on 42

different design cases.

Each of the six methods was originally
devised according to a vide variety of different
criterion for adequate performance of a reduced-
order compensator design. Despite this wide
disparity among the different aims and motivations

of the several methods there are at least three

criteria that may be reasonably applied to judge
the success of a reduced-order design:

Figure 2 Outer (Romotopy) Loop ot OP Solution Algorithm
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1. Toed-loop stability co-t

.al 2. Stblt .1 th £a-d-r. Cooro

by Different Muttdo

2. iatent to vhich the reduced-order
compensator inpulse and step responsematch the full-order. LQG. compensator r ,.bd 0 .01 o.1 1 to too 1000 Moo

r esponseon 1
7 S £ S S U |
6 S.$| $

3. The losed-loop qu3d.atic cost SM. 1)a , s s t a

2 S U S b I U
However. item 3 will not be considered since costs a z U

3 U U U U U U U

LS£U 3 S 2 U

indicated in Fiure 3.S S S
2 S U U

7 $ S U S o S

to (3) 4 [
itTb 2s mi th I S S S U 1

3 U U 5 £ U S U4 2 ce s Ue Ui U SUS

7 S I S U U U

acivaihaefucesncivn £ S S S

clse-lopstbiit fr helage Nvaue ad - - - -J U - - "

6 - . , U UU

expeinc grea -erder i l f edzed-or Comosaltes U U

ibd e 3. car l ay, foA tep or imp" t res p t U

Amdivae 01' 4, • • S a

2 S 6 S S 5

cI

First. Table 2 suarizes the closed-loop . . S. D.s . 1
stability propedues of all design methods in all 42ta - s s s - S -

42 cases. Generally. it s seen that all methods
achieve a high rate o success i he C) a shieing0 0 0 . S s
closed-loop stability for the larsger N values nd S €b l o od - 1 0.o o y t M 4 $6 & 1 .& 1 .small q 2" On the other hand. methods 1-5 V Vairl- €

experience greater dsfficultes for low values of
N c and. particularly. for large q 2" With respect

to stab it the only qualitative distnction of .statble so3 0 Sta .7 33.3a .3 y
among the methods is that method 6 (optimal th-routero" Hs-IMA4

projection) produces stable design in all 42

design cases. thne Toasa q its
0-011 O-1 1 10 100 1 1"0 3=0 A ll C*"e

The trend toward increasing difficulty of the

desen th increasg disturbance noise intensity

producelfaster oybres thha arhore sesie LS.Uh5r 1 3 00 100 100 100 100360.3 U0.0 W$.

percentage of closed-loop stable designs given by

the different methods for the different values of Cr, () 1 .3 .3 0.3 23.3 0 16.7 V1.0

q2 and in tota . That the fraction of stable esigns
designs declines ainh increasins q 2 is to be
expected since larger disturbance noise intensity Tosirat 6 Skelte (4) 100 0. U.3 23.3 0 0 o 42A

produce faster observers that. are ,more sensi.tive , d e e e e e o 3 oe e~

to order reduction.
thpttel Pejuetti (6) meh 10 too 1)o.o to 1eand5 N

O4er2al. for this exople problem method 4
ehibits the mllest fracto of stable det chh e
(w ith 24 ustable des igns) and d es not achieve q x 2 0 . N a 2 . 4 . 6any order reduction for q2 a 100, 1000. 2000. Of q2 =  00 c•2.3 ,S6

the LQG reduction methods (1-5). methods I and 5
fare best - with only 4 unstable designs out of Nc a 2. q 2 a 0.01, 0., 1.0. l0, 100- 1000- 2000

42. As noted. optimal projection (method 6)
yields stable designs in all cases. Next. consider the accuracy with the step and

impulse responses (see Figure 3) of the various
To permit independent corroboration by reduced-order compensator designs track the

interested readers of the OP design capabilities corresponding response of the full-order LQG
we give numerical values of the compensator gains design. These characteristics exhibit similar
obtained by method 6 for a selection of the vore trends as noted with respect to closed-loop
difficult casese - namely: stability. For example, Figure 4 shows a

comparison of unit step responses for second-order
C See Reference [13] for a complete listing of all compensator designs with a small value of

42 cases

6
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Figure 4.& - Comparison Of Unit Step responses of F11.ure 5.& - Comparison of impulse responses of
secoad-order compensators given by methods 1-5 second-order compensators given by methods I-S

with full-order design (small Y2  with full-order design (suall q.,)

T J

SI

seod-re copnstr gie ymtos1 .adscn-r rcmestr ie ymtos 1. 5 n

deign .b Hoevr C thomparison of mehds15 agi.it sis respnsd o(Figures 6.b an 7.b)ero ofthastrspneso

snFiueond-orde .omethos 1ivend by sehows meho 6**~ soorerha cmeseors in bye accurods ith.an
disthctfullperorer dsing accuracl For -hct'rnien fl-rderpodesg trsme full

clarit1.0) nti ae l methods 1ad5recmrex ihimitho oredtin mtosehd5exiisdil

6tai ityr a.b. rearnbe agrs earen th fmllhode bT us. a reet the reinaesosted Onehi
dsin seH~toer as the comparisona of a method eaain, itpsroblnd (Figurs I. and .b drtatgo

Isthinly super6ir tckingto aluac. sorcchic i' taiengtablesponse -oo trcktesfulls
clarity, mtods1 ad 5sae compared copaith sf whl method re design.abe esgs n l

th impiurse rebspHee ifth sacea thatg metho) ca Tus. o h 2dsg aetde nti

is somueh.at ce toin the tQhesse than reuthod eAlo proble caen xndethods 1 and 5deowtaegd
1ethhile(methode6 i close of&) all. nd5 ofrgodtaset epnecarceitc

dspaigniartrnsy aretseergmn t intecmison ofe while method 6 taciks tabfle-odeignspinalr

LQG response. This agreement is slightly exceeded rehpoles thd 6cssthefl-r. opnao
by method 6 (Figure 5 .b).* but on the whole,.epne tecoet
methods 1. 5 and 6 show excellent performance. In view of the good performance exhibited by

On the other hand, for a fairly large value method 6, we present. in the remainder of this
of q. bth sabiity nd greeentwithLQGsection, additional details on the OP design

oq2 . ohsaiiyadareetwt Q results and the performance of the solution
response is degraded somewhat for several methods, algorithm described in Section 3.
Figures 6 and 7 show comparisons of unit step and
impulse responses f or the case N c z:S. q 2 = 100.

In this case, only methods 1. 3. 5 end 6 yield
stable designs and are thus cospared. Of the LQG

7
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Figure 6.s -Comparisonl of unit stop responses of
fifth-order compensators given by methods 1. 3. and 5 Figure 7.b - Comparison of unit stosp responses of

wit~h fullX-order design (large q,) fifth-order c'ompensators gi~ven by methods 5 and 6
with full-order design (large q2)

First. as noted. the OF design philosophy

index, J. (defined in M3) as the "fiura of

" fSM merit( for a reduced-order ompensator desin.
I, Thus. we approprcitely dsplay in (lure 8.... foc..sesa pothe ofted ttdai performanceineJ

t , (normalized by q2 ) versus compensator order for

- - al 7 values of q2 " Note that apart from minor

variations that are likely due to the benign
convergence tolerance used in the solution

algorithm. J generally decreases monotonically
with increasing N c These graphs thus illustrate
the basic tradeoff between performance and

controller complexity.

fl.E , W TO 5 ,0 O -.S -..0 Note that for small q2 (Figure 8..).
performance is not much affected by order

Tigure 6.b - Comparison of unit step responses of reduction. This is to be expected since small
flt,-order Compnsators given by methods 5 and 6 disturbance noise intensity. in this problem.

vith full-order design (large q2 ) leads to low observer gains and to small values
for the terms involving T in equations (10).
Since the TL terms in equations (10) have little

effect, the OP designs are approximated by
balanced projections of the LQG design. This
might also help to explain the relatively
successful performance of all methods for small

q2 .

POIL ManFor large (Figure S.b) and for very large
mtuo I (Figure 8.c0 values of q . however. the

ones I degradation of performance with reduction in order
------. is increasingly ste. for example, while for

"'01 q2 = 1.0. the 2nd order performance is only 2.5%5 i" ~ ~ 4 " ; *''" "
;  

" ............

O .:iA'' . , " '1. VA above the LQG performance, for q - 2000, the

second-order performance is 270% above the LQG
S I /I , Vvalue. Thus, order reduction under large

disturbance noise does appear to be a more
a. delicate matter.*. , • 5 . ,s .s a. a. e . a.

TiE me lI O T Si ~m 2-1001 While increasing difficulties with q 2 are not

clearly manifested in the stability or transient
Figure 7.a - Comparison of inpulse responses of response properties of the OF designs, these are

fifth-ordsr compensators £iven by methods 1. 3. and 5 reflected in the computation required to arrive at
with full-ordar design (large the final designs,

thS ia dsgs



a) . c- To explain this we now describe the specific
x 0.01 design steps taken and the performance of the

* 0.1 solution algorithm. Each design case was treated
using the OP solution algorithm shown in Figures 1

- "" 1 and 2 and a maximum homotopy step size of 1.0 was

coinput. furthermore. for each design case. the
algorithm vas started "cold" - i.e.. without being
initialized with gain values obtained in previous
cases. On initial application of the algorithm.

a the OP design results presented here were obtained
* "after using the numbers of inner loop iterations

j given for each case in Table 4.

Table 4. *.: al Zonm-Leap terat±oa Vse && •V SlutL" Algorithm
60.8- 1-iAL geatee cmpocatt.en

.C .. 01 0. 1 10 1000

lola. 505,7- ?. .I.1.. 7 a a a 4 5 a I0

b ) C R % ' q ."'
X 2 10£ 1

z -0 10.3 a 2 a a a 6 is

-~3 4 4 4, a 9 1 a

•I

" a . o 2 t 4 0

Note that with A 1.0. the logic of the

outer loop (Figure 2) implies a minimum of two
100'0 inner-loop iterations. Inspection of the results

obtained in some of the benign cases suggested the
0..0 possibility that only one inner loop iteration was

o*o s c io.s needed. Consequently we re-examined the cases

co.-.s..co oe40 comprising q 2 a 0.01. 0.1 1.0 and N a 5. 6. 7.

by revising the outer loop logic to output gain
,o, cmlS 0J.le.,5 values after only one pass through the inner loop.

It was found that this produced acceptable
accuracy in the cases q2 - 0.01; N = 5. 6. 7.

SC) cL' V i  q2 q 2 a 0.t . Nr ei 6. 7 and q2 a 1.0. Nc = 7. Thus,

X 1000 tervsdresults are as given in Table 4'.
a 2000 Since the gains are essentially unchanged, the

design results obtained on the first application
are the ones presented here.

%22
Ii- S,.w l ter tiCdoLtre e .1 .asew

'a * 0.01. 0.1. 1.01 IUs * ,.

'0.5 
0.01 0.1 1 10 10 10 2000

order. ae

5. 1 1 1 4 • S 10
0.0 0.5 010.0

1 1 1 a 6 4 a t0

51 2 2 6 5 5 7

4 2 2 2 a S 6 10

7lgBUt I Steady-stsas quedteic porforvaw ce of 0r deflgns . .- -.....-

versus ConRItLDOT order for a11 values of q2. 3 • I *

9 - - - - -1'-



As Table 4' shows. relatively few iterations A precise comparison of the computational

were required in the benign. =all q 2' cases. In burdens incurred by the various methods is not
particuiar, onlty on. inner loop iteration was possible at present. However. as a roughneeded in most of the cases prising q2 = 0.01. comparison. it is fair to say that the OP methodentailed comparable computation in the relatively
0.1. 1.0 and N = 5. 6. 7. However. for large q2 . benign design cases and more computation in the
up to 10 iterations were required. Thus it is difficult cases. However in this case LQG

clear that all methods run up against a reduction methods often produce unstable designs.

fundamental source of difficulty when disturbance Thus the OP method exhibits a tradeoff between

noise is large. computational burden and corresponding design
reliability. Present developments are directed

At the time of writing, full compilation of toward implementation of advanced homotopy

the computation tines required for all methods on techniques which take particular advantage of the

the same machine is not available. All OP structure of the basic OP design equations to

calculations were performed on a Harris H800 markedly improve design computat .n speed.

minicomputer. However. as a rough estimate, it is
fair to say that in the benign cases, the OP
computation is comparable to the burden incurred Appendix I
by methods 1-5. For the difficult, large q2 cases

the OP computational burden it clearly in excess
of methods 1-5 (although certainly not excessive In the following, numerical values of
from a practical point of view). However. it is the reduced-order compensator gains. K. F and A
precisely in these cases that the LQG reduction obtained via the OF solution algorithm discussed
methods experience the greatest difficulties in in section 3 are given for the design cases:
producing closed-loop stable designs. Thus a
meaningful comparison of relative computational q = 2 Nc 2. 3. 4. 5. 6. 7
burden in these cases cannot be performed. 2

and
Finally it should be noted that the Nc a 2. q2 0.01. 0.1. 1.01 i0.

computational burden associated with OP for the c000. 000. 2000
designs presented here is also an artifact of the
solution algorithm depicted in figures 1 and 2 and
is not solely the result of the design equations
themselves. This algorithm was convenient to use.
and was the first implesented since it requires
only standard LQG software. On the other hand.
the algorithm discussed in section 3 takes no
particular advantage of the special structure of cI: qo.0l. N€.2
the fundamental design equations. (10). Its 2
principal draw-back is that it involves the
iterative solution of four N.N, nonlinear matrix A 0.13579-01 -0.1398
equations. To remedy this. Richter [121 has C -0.3
developed a step-wise homotopy algorithm which L
requires, at each homotopy step. the solution of T
four N xN linear equations. Clearly. for mll I I 0.3451E-02 0.93719-01]

N .. this offers the potential for computing an OP K -0.30451-0i 0.14211

design with less computational burden than is
required for a full-order LQG design. It is
anticipated that the future utilization of
Richter's algorithm will permit a more accurate CASt: q2 0.1. N 2
and definitive comparison between the q
computational cost of the LQG-reduction techniques
and the Optimal Projection formulation. [0."59-02 -0.157

5. Concluding Remarks C

In this paper, we have used the example IT [ 0.16959-02 0.12661
problem of Enns [2] to perform a computational
comparison of six methods for reduced-order - 1-0.5729,-01 0.2713]
dynamic compensator design. Methods 1-5 are based
upon LQG-raduction procedures while method 6 is
based upon the Optimal Projection (OP)
formulation. q ~ D~

Of the LQG-rduction methods, the methods of 0.7832-02 -0.1512
particularly good stability and transient response

properties. However, in the cases examined, the
OP method gave somewhat better transient response IT . L 0.85169-03 0.135e)
characteristics and. unlike the LQ-reduction
procedures, produced closed-loop stable designs X - o.o5"
for all the 42 design cases.
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CASU: q2 - 10. No . 2 CAS: q2 - 100. Bic 2

A .[ 0.7474-0 0. 1o7 . [_0.274.2E-o2 n.4 2
-1.699 -0.8276 20.2274-1

T . [ 0.48141-03 -0.10811 FT - [-0.1536E-03 0.1303]

K - [-0.1740 -0.9190 K - [ 0.2351 0.41781

CAS: q2 1000. c =2 CASE.: q2  2000. N - 2

A.. [_.1745E02 0.39] A . [ 7E3 -0.671]
J -2.129 -0.75691[-021 At 2.047 -0.1.0951011

rT 
. [--0.624;1-04 0.7341r-011 F

T  
[ 0.32-72g-0 -0.7625E-011

K = C 0.3753 0.50491 K - C 0.3807 -0.64111

CASE: q2 2000. H - 3 CA.: q2 2000. N, , 4

A _0235 1-02 0.1516 0.1492 ][0.3225E-02 -0.3717 0.1238-01 -0.5735-01
c€ • 1.447 -0.9395E[-01 0.6591 2.170 -0.38609-2 -0.3623 -0.19299-*01

Ac

-1.592 -. 704,1 -0.10272--02 c -0.1140 0.5365 -0.25641-01 -0.2749

T 1.176 0.1297 0.3488 -0.44.52

F T 0.59441-04 -0.36191-01 -0.39901-011

K - .0.92451-04 0.60442-01 -0.3234Z-02 0.33702-011
K • [-3.5$372 -1.410 0.1033j

K = (-0.4871 0.5626 0.6852 2.540)

CkSE.: q2 - 2000. Mc S

0.1335E-02 -0.3220 0.54621-02 0.44E01-01 -0.193 1
2.226 -0.3920E-02 -0.4659 -0.39411-01 0.49511-02

A = -0.54181-01 0.6432 -0.1099E-01 0.2117 -,0.4355 !

-0.80 42 0.2011 -0.2791 -0.1891 -1.488

6.046 -0.12031-01 1.376 2.351 -0.6771E-03J

F 
T 
. 0.40181-04 0.65571-01 -0.1614E-02 -0.2413E-01 0.1817]

K - [-0.4697 0.5101 0.4346 -1.795 -0.40171-011

USE: q2 - 2000. N, - 6

0.81901-03 0.3031 0.8960r-03 0.7075o01 0.3110 0.2265

-2.336 -0.2645E-02 0.5058 0.1198E-01 0.38472-02 -0.43061-01

-0.75922-02 -0.6687 -0.1431t-02 0.2356 0.7586 0.5132
A
€ -1.358 -0.93981-01 -0.3875 -0.1281 1.265 -0.88821-01

-8.168 -0.11051-01 -1.861 -1.,09 0.1190E-02 0.1426

-16.17 -0.4290E-01 -3.152 -1.545 -0.3782 -1.799

7 
T 
. [ 0.27131-04 -0.7675Z-01 -0.2492E-03 -0.4171-01 -0.2702 -0.5356)

I * [-0.4324 -0.5140 0.1322 -1.54S -0.1364 -3.5241

11



CS: q2 * 2000. N 7

0.8683E-03 -0.3085 -:0.1180"-02 0.60981-01 -0.284 -0.2619 -0.9244E-03

2.329 -0.28211-02 0.4921 -0.1784Z-01 0.44689-02 .-0.47909-01 -0.19501-02

0.10411-01 -0.6794 -0.20571-02 -0.2171 0.6977 0.6175 0.41069-02

A C -1.169 0.1132 0.3505 -0.1381 -1.303 -0.1929E-01 0.2136E-01

7.940 -0.10911-01 -1.86 1.851 0.9687E-03 0.1872 0.79261-02

19.90 -0.4695-01 -6.056 2.398 -0.4123 -2.407 -0.70511-01

0.1906 -0.46343-02 -0.38241-01 0.26801-01 -0.57931-01 -0.3975 -0.12.21-01

F
T  

1 0.28321-04 0.74621-01 0.33621-03 -0.38011-01 0.2586 0.6490 0.62171-021

K - (-0.4387 0.51.34 -0.1642 -1.591 0.70631-01 3.924 0.1567]
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ABSTRACT

The purpose of this paper is to present a homotopy algorithm for
solving the Optimal Projection Equations. Questions of existence and
the number of solutions will also be examined. It will be shown that
the number of stabilizing solutions to the given Optimal Projection
Equations can be determined and that all solutions can be computed via a
homotopic continuation from a simple problem. For an important special
case, where the number of inputs or the number of outputs to the system
is less than or equal to the dimension of the compensator, there is only
one solution to the OPE. thus guaranteeing that globally optimum reducedi order controller can be computed.

1. Introduction

Despite significant advances in the cost and performance of digital
* computers over the last decade, there remains a need in several

technological areas for low-order, high-performance controllers. In
particular, this paper is motivated by the problem of vibration
suppression in large flexible space structures. Such systems are
infinite-dimensional (distributed parameter) in nature and hence any
finite-dimensional controller is necessarily of reduced order. The need
for low-order controllers is further driven by severe constraints on
cost. weight and power in space systems, not to mention the restriction
to space-qualified computational hardware.

A wide variety of approaches have been proposed to obtaining
reduced-order controllers. A comparison of several approaches to
controller reduction is given in [1]. These methods operate by first
designing a high-order LQG controller and then obtaining a suitable low-
order controller by means of controller reduction.

A more direct approach to designing reduced-order controllers
involves optimizing the quadratic performance functional over the class
of controllers of fixed order. The controller order may be determined
by implementation constraints or can be varied for
performance/throughput tradeoff studies.

Supported in part by the Air Force Office of Scientific Research under
contract F49620-86-C-0038.



An interesting reformulation of the parameter optimization approach
was given recently in [2]. By setting the gradients to zero, the
authors showed that the first order necessary .conditions can be
transformed to yield explicit gain expressions for extremal fixed-order
controllers. An appealing aspect of this formulation is the recasting
of the necessary conditions in a form which generalizes the classical
(full-order) LQG solution. Specifically, instead of a pair of separated
Riccati equations, the necessary conditions for fixed-order dynamic
compensation comprise a system of two modified Riccati equations and two
modified Lyapunov equations coupled by an oblique projection whose rank
is precisely equal to the order of the compensator. When specialized to
the full-order case, the projection becomes the identity, the modified
Lyapunov equations drop out, and the modified Riccati equations simplify
to the classical Riccati equations. Hence this approach appears to be a
natural and fundamental generalization of LQG.

Regardless of how appealing the optimal projection formulation may
appear to be and in spite of the empirical advantages claimed in [2-10].
its contribution is vacuous unless certain serious questions can be
resolved. These include:

1. Under what conditions on the problem data can the optimal
projection equations be guaranteed a priori to possess a
solution?

2. Given problem data, exactly how many solutions do the equations
possess?

3. Of the possible solutions, what are their stability properties.
what is their performance, and which is the global optimum?

4. How can numerical algorithms be constructed which can be
guaranteed to converge to any desired solution especially the
global minimum?

It seems clear that any attempt to address the above issues must
utilize mathematical methods which are global in nature. To this end we
have applied degree theory and associated homotopic continuation methods
([13-24]) to analyze the solutions to the optimal projection equations
and to construct convergent. implementable algorithms for their
computation. The purpose of this paper is to report significant results
in this regard.

2. Homotopic Continuation and Degree Theory

2.1 Homotopic Continuation. A homotopic continuation method for
solving a problem is to first solve an easy "similar" problem, and then
to continuously deform the easy problem into the original problem and to
follow the path of solutions as the easy problem is deformed into the
original problem. This is shown conceptually in Figure 1.
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Figure 1

The problem then becomes to follow the path of solutions x(t) of F(t.
x(t))=0 from t=0 to t1l. Differentiating E(t. x(t))=0 with respect to t
one obtains the Dauidenko differential equation

F (t. Ct))ad + Ft(t. x(t)) = 0. or

dz = _F-1 (t. X~t)) F (t.' .X~t)'), X(O) = x0Sat x

Integration of this initial value problem yields x(i). the solution to
F(x)=0.

Example 1. Consider calculating the roots of a polynomial

P (Z) =Zn + .a, - + a2z-2.. + an  0.

Let the easy1 problem be F0 (Z) = Z - 1= 0 and deform F0 to F

F(Z.t) = n + t(a.Zn - 1 + a n-2 ...a + t.
In n

At t=0. F'Z.0)=F0 (Z) and F(Z.I)=F(Z).

The solutions Zk(t) which satisfy F(Zk.t)=O are found by differentiating

F(Zk(t),t)=O to obtain

a n- + a2  ... a n

dt n -i + t(a(n -2..a n -1

3



This differential equation can be integrated from the n initial values

Zk (0) =e- k
n

to the n solutions at t=l.

2.2 Degree Theory. The main theoretical question which must be
answered when using a continuation method to solve a given problem is:
Is there in fact a continuous path of solutions connecting F(Ox)=O with
F(lx)=0. and if so, how many paths are there?

Topological degree theory can be used to answer this question.

Definition 1: Given a function f mapping D in RN into V in R a regular
value of f is an element p in V such that the NzK matrix of partial

derivatives of f. f (W). has full rank for each x in f- (p). Note

that if N=K then fx (x) having full rank is equivalent to

det(f (x))AO.

NN
Definition 2: Given a function f mapping an open set D in RN with

boundary D into V in R and a point p in V. the degree of f for
domain D and point p (written Deg(f.D.p)) is defined and is an

integer if there.is no x in the boundary D of D such that f(x)=p.
If p is a regular point of f then the degree is the sum of the
signs of the determinant of the Jacobians of f evaluated at all x
such that f(x)=p. i.e..

deg(f.D.p) =-E Sign( Det(f x x )))

where f(x ) = p

The degree has the following properties:

1) If deg(f.D,p) A 0 then f(x)=p has at least one solution in D

2) Let f(x.t) : RN to RN for each t in [0.1] with f continuous. If for

each t. f(z.t)-p has no solutions for x in D, then deg(fD.p) is
constant for t in [0,11.

3) If f is as in (2) and deg(f.Dp)0, then at least one solution of
f(x.0)=p connects with a solution of f(x.l)=p.

4



Example 2. Every polynomial has at least one root (over the complex
numbers)

U anzn-2

Let f(z) = zn +a 1z + ... an

We wish to show that deg(f.D.0)#0.

Let f(z.t) = + t(a zt + a2zn
2 + ... + a + t

Let D=z such that IzI(R. where R is some large number.

For z on D ((zl=R) z is much larger than ta.z n so f(z.r)AO for z

in D, thus deg(fD,0) is constant for t in [0.1].

For t=O, f(z,0)=zn - 1 and writing f(r,)--x + iy we have that the
solutions to f(r.o.0)=0 are rl. e=kir/2n for k=01.....n

f(z.0) = rncos(n*0) + 1.0

rn sin(n*O)

The Jacobian of f is

f = Uar-n cos(n*9), -nr nin(n*0)1
r.0 nr nlsin(n*e). nr n os(n*O)J

2 2n-1
Det(f )= n r

The sign of the Jacobian is always +1, thus deg(fD°0)--n

3. Homotopy for the Optimal Proiection Equations

The object is to find P. Q. P. Q. which solve

0-AQ + QA + V1 - QQ + -T

0 = ATP +PA + R - PZP + Tpzpr.
1 1 1

T +- - T
0 = (A-ZP)Q +Q(A-ZP) +QZQ r,.

0= rAe + P(A-QZ) + PIP - r T PZPr

5
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For t=O the solution is easy to find. The object is to follow the path
or paths of solutions P(t). Q(t). P(t). Q~t) from t=0 to t1l. Vote that
if n c minU.n) - flu then there is only one solution at t0O. If

fl~n (.P then there are (inAp - u solutions at t0O.
c n u nc-n u /

In following these initial solutions frou t-0 to t=1 there are
several situations which could occur (see figure 2).

lepoWomegmee g. hOmy =0 The da Iem do not xim
W Me a WM KL 0. " t4 M on" ot asot 1* vowe OWAMUm1

Figure 2

.6



I

It can be shown using degree theory that the situations shown in
dashed lines cannot occur. That is. the only solutions to the OPE at
t=l (or for Otl) are those which are continuously derived from the

solutions at t=O.

Thus we have the following result. Let n denote the dimension of

the unstable subspace of A.

Main Theorem. Assume that the plant is stabilizable and
detectable, V1>0. R1>0 and nu <n . Then, in the class of nonnegative-

c

definite solutions Qi P. Q, P with

rank Q = rank P = rank QP = nc a

the optimal projection equations possess at most( in(n.m. 2)-n\

n )-nu ) n c< min(n.m.A),

1 *otherwise,

stabilizing solutions. Each such solution is reachable via a homotopic
path with starting point corresponding to diagonal initial data.
Furthermore. if the plant is stabilizable by means of an n th-order

c
dynamic compensator, then there exists at least one solution.

Remark 3.1. As shown in [26], stabilizing controllers of arbitrary
reduced order may not always exist.

The proof of the main theorem is lengthy and technically complex
and beyond the scope of this paper. Rather than proving the main
theorem for'the optimal projection equations, the full order Riccati
equation will be examined using degree theory to obtain some well known
results for the Riccati equation. The proof of the main theorem follows
the same method as will be used for the full order Riccati equation.

Full Riccati Equation:

We will now use degree theory to examine the full order Riccati
equation

(1) ATP+PA -PSP+V=0

Where A is an nxn matrix and S and V are nxn symmetric matrices with
V>0. Denote IPI = max IP ijI and restrict P to be symmetric. Define

F(x.t) to map RN into R N(N=n(n+l)/2) for each t in [0.1] by

(2) F(P.t) = AT(t)P + PA(t) - PS(t)P +V(t)

7



where A(t). S(t) and V(t) are continuous and S(t). V(t) are symmetric

with V(t)>0 . Let D be the set of all P such that IPI<R and P>0. This

is an open set in RN. The object is to show that Deg(F.D.0) is constant

and A 0 for t in [0.1].

Lma 1. There exists R>O such that for all t in [0.1.] if P
T

satisfies (2) and (A(t),B(t)) is stabilizable then IPI<R. Note S=BB

Proof: Suppose that the lemma is not true, then there must exist
t i and ?. such that F(Piti)=0 , and IP I -> s. We will show that this

cannot occur.

Let P. = P./IP.I so IPiP. = P. " Then

AT(t.) Pi + Pi A(t.) - IPil IS(t.) Pi + v(ti)/IPiI = 01rteP =  1 2 1 2 1 . . 2

1 2
write P + P. where PB 0 and P2 is in the range of B. Then

A(P. P.) +(P. + P?) A -IP.I p. Bp. + V/IP.I = 0

2
Since P. and P. are bounded and A and V are bounded, and IP I ->00 .-

1. 2. 2.

P2 -> 0. Thus
P.1

Ti +A 12 T2
AY + A Pl _ iP P. BB P. = 0(1/iP.I)2 " 2. 2. 1

Multiplying on the left by BT and on the right by B yields

IP I BTP.BTP2B = 0(1/IP.I).

l I I.

Thus BT P.BBT P.B is bounded, note that this does not imply that P.BBTP.
. 2. 1

is bounded, but it does imply that P.1/2B is bounded. Let SG = limit1

1/2B~p1/2P.i/BBTP. and F be limit Pi, then
3. 1.2

ATp + PA - p 1 /2"SG F 1 / 2 = 0.

Note also that P the subspace spanned by P is an A invariant subspace.

i.e. AP is contained in P. Let A be the operator A restricted to P.
* *

Since P is an invariant subspace, eigenvalues of A are eigenvalues of A.

I and P satisfy

8



(_AT) +(_A) + F11 2SGpl/ 2 =0

Since P>0 and PI/2SGpl'2>0 we have (-A) is neutrally stable.

Since P=0 we finally have that there exists eigenvectors of A say E.
such that BE=0 and the eigenvalue of AE is non-negative, or that AB is
not stabilizable. Thus IP I ->ao implies that AB is not stabilizable

1
so A.B stabilizable implies IPiI bounded. QED

Lemma 2. F(P.t)00 for P in D. Proof: D consists of all symmetric
P such that either IPI=R and P>0 or IPf<R-and P>0 with P singular.
Lemma 1 has shown that F(Pt) # 0 for IPI=R. Suppose there exists a P
which is singular with F(P.t)=0. Then there exists a vector u such that

Pu=0 and uTP=0. Multiplying (2) on the left by uT and on the right by u

yields uTV(t)u:O. which contradicts V(t)>0. Q.E.D.

We now have that Deg(F.D.0):const for all t in [0,1].

Lemma 3. Deg(F.D.0)=l. Proof: Let A(0), S(O). and V(0) be
diagonal. There is only one positive definite solution to (2) for this
A.SV. and this solution has Jacobian non-zero, thus the Deg(F.D,0)= +1.

The above analysis shows that there is always at least one solution
to F(xt)=0 and that the solution set at t=0 (consisting of just one.
point) connects with the solution set at t=l, but the solution set at
t1l may consist of more than one point so that the desired solution is
not obtained from the homotopy. We will now show that this is not the
case, i.e., for the full Riccati equation, there is one and only one
positive solution at each point on the homotopy path.UW

Proof: Let F: -> n  by

F(Pt) = A TP + PAT - PS(t)P + V(t)

where A(t),S(t), and V(t) are as above and P is an nxn complex matrix.

Let D be all P such that IPI<R. and real part of eigenvalues of P
are positive.

D is open domain in Cnx n . By the same argument as in the real
case, F(Pt) # 0 for IPI=R. Also, it can be shown that only solutions
to F(Pt)=0 are Hermitian, so the eigenvalue of P are real. Thus

F(Pt)=0 and P in D is for IPI=R (which cannot occur) or for P to be
singular and F(P.T)=0 which also cannot occur. Thus the deg(FD.0)=
const for t in [0.1], and by using A(0).V(O). and S(0) diagonal, we get
that deg(FD,0)=I.

9
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We also know that an analytic map from Ck into C preserves
orientation, that is the Jacobians always have the same sign, thus we
have that the number of solutions (at a regular value) is equal to the
degree and is always less than or equal to the degree. Thus we have
that there is one and only one complex solution to (2), and since there
is at least one real solution, there is one and only one real positive
solution to (2).

4. Algorithm Description and Numerical Results -_

In a homotopy path following algorithm one follows the path of
solutions of F(n(t).t) by integrating the initial value problem

dx dF
= F (x(t))L(x(t).t); X(O) = 0 .

For the optimal projections equations the solution P. P. Q. Q can
be easily determined once - is known so the P(t)=P(T(t)). Q(t)=Q(r(t))

etc. Thus the derivatives of P. Q. P. Q can be written in terms of
Tderivatives of G and r. Thus we obtain

vec rTj =[ vec f~r.G T.o G T'1 [] r
which gives 2ncn equation for r' and G . P'. Q'. P' and Q' are then

calculated from I" and GT ' and finally r(t+&t) is updated by

r(t+&(t) = r(t) + + r' xat

and likewise for G, P. Q. P and Q.

Figure 3 summarizes the results reported in [1] for LQG reduction
methods along with results obtained using the homotopy method for
solving the optimal projection equations. Here q2 is a scale factor for

the plant disturbance noise affecting controller authority. Clearly.
LQG reduction methods experience increasing difficulty as authority
increases, i.e.. as the rI terms become increasingly more important in

coupling the control and reduction operations.

One of the main goals of the development effort was to extend the
range of disturbance intensity or, equivalently, observer bandwidth, out
beyond q2=2000. To this end, second-order (nc=2) controllers were

obtained with relatively little computation for q2=10,00. 100.000.

1,000.000. The performance of these results is summarized in Figure 4.
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Sequential design of decentralized dynamic compensators using the

optimal projection equations

DENNIS S. BERNSTEINt

The optimal projection equations for quadratically optimal centralized fixed-order
dynamic compensation are generalized to the case in which the dynamic com-
pensator has, in addition, a fixed decentralized structure. Under a stabilizability
assumption for the particular feedback configuration, the resulting optimality
conditions explicitly characterize each subcontroller in terms of the plant and
remaining subcontrollers. This characterization associates an oblique projection
with each subcontroller and suggests an iterative sequential design algorithm. The
results are applied to an interconnected flexible beam example.

1. Introduction
The purpose of this note is to consider the problem of designing decentralized

dynamic feedback controllers using recently obtained results on quadratically optimal
fixed-order dynamic compensation (Hyland and Bernstein 1984). As in Bernussou
and Titli (1982), Looze et al. (1978), and Singh (1981), the overall approach is to fix the
structure (information pattern and order) of the linear controller and optimize the
steady-state regulation cost with respect to the controller parameters. The underlying
philosophy is that the ability to carry out such an optimization procedure permits the
evaluation of a particular decentralized configuration which may be dictated by
implementation constraints. If there is some flexibility in designing the decentralized
architecture, then these results can be used to evaluate the optimal performance of
each permissible configuration, and hence to determine preferable structures. Since
the present paper is confined to the question of optimal regulation, trade-offs with

Uregard to robustness in the presence of plant variations are not considered. Such
trade-offs can be included, however, by utilizing the Stratonovich multiplicative white
noise approach developed by Bernstein and Hyland (1985).

To further motivate our approach, consider the problem of controlling an nth-
order plant Y by means of a decentralized dynamic compensator consisting of
subcontrollers ( and '2. A straightforward design technique that immediately
comes to mind is that of sequential optimization (Davison and Gesing 1979, Jamshidi
1983). To begin, ignore W'2 and design (1 as a centralized controller for Y. Next,
regard the closed-loop system consisting of Y and W, as an augmented system Y' and
design .2 as a centralized controller for Y'. Now redesign W, to be a centralized
controller for the augmented closed-loop system composed of Y and W2,, and so forth.
One difficulty with this scheme, however, is that of dimension. If, for example, one were
to employ LQG at each step of this algorithm, then on the first iteration W, would
have dimension n and thus W'2 would have dimension 2n. On the second iteration, W,
would require dimension 3n and W'2 would have order 4n, and so forth. Such

Received 15 December 1986.
t Harris Corporation, Government Aerospace Systems Division, P.O. Box 94000,
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1570 D. S. Bernstein

difficulties can be avoided by setting n = 0, which essentially corresponds to static
output feedback. Although easier to implement, static output feedback lacks filtering
abilities such as are inherent in LQG controllers, which are purely dynamic (i.e. strictly
proper).

As discussed by Sandell et al. (1978), p. 119, the explanation for this difficulty is
provided by the 'second-guessing' phenomenon: when LQG is used, each subcon-
troller must consist of linear feedback, not only of estimates of the plant states but also
of estimates of the other subcontrollers' estimates. Hence the 'optimal' controller is
given by an irrational transfer function, i.e. a distributed parameter (infinite-
dimensional) system. Such controllers, of course, must be ruled out since their design
and implementation (except in special cases) violate physical realizability (see, for
example, Bernstein and Hyland 1986).

Having thus ruled out zeroth-order and infinite-order decentralized controllers,
we focus on the problem of designing purely dynamic decentralized compensators.
Moreover, by invoking the constraint of fixed subcontroller order, we overcome the
second-guessing phenomenon. Utilizing the parameter optimization approach thus
leads to a generalization of the result obtained by Hyland and Bernsteiv (1984) ior
centralized control. In brief, it was shown in Hyland and Bernstein (1984) that the
unwieldy first-order necessary conditions for fixed-order dynamic compensation can
be simplified by exploiting the presence of a previously unrecognized oblique
projection. The resulting optimal projection equations, which consist of a pair of
modified Riccati equations and a pair of modified Lyapunov equations coupled by the
optimal projection, yield insight into the structure of the optimal dynamic com-
pensator and emphasize the breakdown of the separation principle for reduced-order
controller design. For example, the optimal compensator is the projection of a full-
order dynamic controller which is generally different from the LQG design.
Furthermore, this full-order controller and the oblique projection are intricately
related since they are simultaneously determined by the coupled design equations. An
immediate consequence is the observation that stepwise schemes employing either
model reduction followed by LQG or LQG followed by model reduction are generally
suboptimal. For computational purposes, the optimal projection equations permit the
development of novel numerical methods which operate through successive iteration
of the oblique projection (Hyland and Bernstein 1985). Such algorithms are thus
philosophically and operationally distinct from gradient search methods.

The generalization of the optimal projection equations to the decentralized case is
straightforward and immediate. In the optimization process each subcontroller is
viewed as a centralized controller for an augmented 'plant' consisting of the actual
plant and all other subcontrollers. It need only be observed that the necessary
conditions for optimality for the decentralized problem must consist of the collection
of necessary conditions obtained by optimizing over each subcontroller separately
while keeping the other subcontrollers fixed. More precisely, this statement corre-
sponds to the fact that setting the Fr&-het derivative to zero is equivalent to setting the
individual partial derivatives to zero. Hence it is not surprising that the optimal
projection equations for the decentralized problem involve multiple oblique projec-
tions, one associated with each subcontroller. Furthermore, each subcontroller
incorporates an internal model (in the sense of an oblique projection of full-order
dynamics) not only of the plant but also of all other subcontrollers. The structure of
the equations suggests a sequential design algorithm such as that proposed in this
work.

P
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The simplicity with which this result is obtained should not belie its relevance to
the decentralized control problem. Specifically, our approach is distinct from sub-
system-decomposition techniques (Ikeda and Siljak 1980, 1981, Ikeda et al. 1981,
1984, Lindner 1985, Linnemann 1984, Ozguner 1979, Ramakrishna and Viswanadham
1982, Saeks 1979, Sezer and Huseyin 1984, Silkak 1978, 1983) and model-reduction
methods since the optimal projection equations retain the full, interconnected

a- plant at all times. For the proposed algorithm, decomposition techniques which
exploit subsystem-interconnection data can play a role by providing a starting point
for subsequent iterative refinement and optimization. Decomposition methods may
also play a role when very high dimensionality precludes direct solution of the optimal
projection equations. These are areas for future research.

With regard to the role of the oblique projection, it should be noted that such
transformations do not, in general, preserve plant characteristics such as poles, zeros,
subspaces, etc. Indeed, since the oblique projection arises as a consequence of
optimality, approaches that seek to retain system invariants (e.g. Uskokovic and
Medanic 1985) are generally suboptimal. In addition, the complex coupling among
the plant and subcontrollers via multiple oblique projections provides an additional
measure for evaluating the suboptimality of the methods proposed.

The plan of the paper is as follows. The fixed-structure decentralized dynamic-
compensation problem is stated in § 2 along with the generalization of the optimal
projection equations. In § 3 we propose a sequential design algorithm for solving these
equations and state conditions under which convergence is guaranteed. Finally, in § 4
the algorithm is applied to the 8th-order model of a pair of simply supported beams
connected by a spring. For this example, we obtain a two-channel decentralized
design which is 4th-order in each channel and compare its performance with the (8th-
order) centralized LQG design.

2. Problem statement and main theorem
Given the controlled system

* p
xi(t) = Ax(t) + , Biui(t) + wo(t) (2.1)

i= I

yi(t)=Cix(t)+wi(t), i= 1....p (2.2)

design a fixed-structure decentralized dynamic compensator

.i(t) = A,,x(t) + B~iy,(t), i= 1 .... p (2.3)

u,(t) = C 1ix¢ (t), i= 1....p (2.4)

which minimizes the steady-state performance criterion

J(Ac, Bc, CcX,..., AP' BP' Cc,) A lim E -x(t)T Rox(t) + , u'(t)T Riu,(t)f (2.5)

where, for i = 1._ p: x E R", u E'Pt", yi P", cci e P--e, n. A n,, nc, < n + nc - n ,,

A, Bi, C,, A¢ , Be,, Cc,, Ro and R, are matrices of appropriate dimension with RO
(symmetric) non-negative definite and R, (symmetric) positive definite; wo is white
disturbance noise with n x n non-negative-definite intensity Vo, and wi is white
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observation noise with Ij x 1i positive-definite intensity V, where wo , w .... , w. are
mutually uncorrelated and have zero mean. E denotes expectation and superscript T
indicates transpose.

To guarantee that J is finite and independent of initial conditions we restrict our
attention to the set of admissible stabilizing compensators

s {(A. 1 , Bc1 , Cc, ..., At,, Be,, Co,):A is asymptotically stable}

where the closed-loop dynamics matrix A is given by

A [B AfCe]

where

ff A-[BI ... B,],

CP

A, A block-diagonal (A,,,..., Ao )

B, A block-diagonal (B, ..., BP)

Cc A block-diagonal (Cct ..., CcP)

For possibly non-square matrices S,,S., block-diagonal (S,, S.) denotes the

matrix [ S  fO.)

It is possible that for certain decentralized structures the system is not stabilizable,
i.e. d is empty (Wang and Davison 1973, Seraji 1982, Sezer and Siljak 1981). Our
approach, however, is to assume that dl is not empty and characterize the optimal
decentralized controller over the stabilizing class. Since the value of J is independent
of the internal realization of each subcompensator, without loss of generality we can
further restrict our attention to

s, A ((A.,, B.1 , Cc,,..... At, Be,, Cep) c st: (Ac1, Boi) is controllable and

(Cc1 , Ao1) is observable, i = 1 ..., p}

The following lemma is an immediate consequence of Theorem 6.2.5, p. 123 of Rao
and Mitra (1971). Let 1, denote the r x r identity matrix.

Lemma 2.1
Suppose 0, )5 e P " are non-negative definite and rank / = r. Then there exist

G, r e V q and invertible M e VFX such that

OP = GTMr (2.6)

rGT = 1, (2.7)

For convenience in stating the main theorem, call (G, M, 1) satisfying (2.6), (2.7) a
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projective factorization of Q/5. Such a factorization is unique modulo an arbitrary
change in basis in W, which corresponds to nothing more than a change of basis for
the internal representation of the compensator (or subcompensators in the present
context).

We shall also require the following notation. Let ,T denote A with the rows and
columns containing Ac, deleted. Similarly, let A, be obtained by deleting the rows and
columns corresponding to CciRICc in the matrix

A1 A block-diagonal (Ro, C'1 RI Cc, ..., CRpC.e,)

And furthermore, P, is obtained by deleting the rows and columns containing B, VB,
in

f" -block-diagonal (Vo, B 1 I1BVIc ..., BcP V BTp)

Also define

A O. _B, ]. A, [Ci 01.,._,]

where 0,, denotes the r x s zero matrix. Note that il A, C, , and 9, essentially
represent the closed-loop system minus the ith subcontroller as controlled by the
latter. Finally, define

* 4AiRi-'RT, 4 T vI ,
and, for r e P" X' , let

T, I

Main theorem
Suppose (A.,, B. 1 , C, 1, ,..., A B, CP) e sl+ solves the steady-state fixed-

structure decentralized dynamic-compensation problem. Then for i = 1 ... , p there
exist (n + n, - nci) x (n + nc - nc1) non-negative-definite matrices Q , P, 0, and Is,
such that Aci, Bci and C, are given by

Aci = Fi(-4 - QiEi - TEiPI)GT (2.8)

B, = rFQ,C V-  (2.9)
Cc,= -R-'TPGT (2.10)

for some projective factorization G1 , M, Fi of O1 5, and such that, with r = GT I-, the
following conditions are satisfied:

0 = AiQi + QiJ + Vi - QE1 Q,+r,1 QQ4± (2.11)

0 = A P, + Pi +k, - P,y.,P, + TT± py1 iPT,± (2.12)

0 = (_- PJ), + (A- y1 p)T + Q,.EQ_ - (2.13)

0 = (Ai _ Q,Z )T Pi + fi(,A, _ QiF) + piyzipi_ T ±~p,, Pi(2.14)

rank 0, = rank P, = rank Ol,/ = nhe (2.15)
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Remark 2.1
Because of (2.7) the matrix T is idempotent, i.e. ; =T i.This projection corre-

sponding to the ith subcontroller is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Furthermore, r, is given in
closed form by

T, = f"6 )

where ( )* denotes the (Drazin) group generalized inverse (see, for example, Campbell
and Meyer, 1979, p. 124).

3. Proposed algorithm
Sequential design algorithm

Step 1. Choose a starting point consisting of initial subcontroller designs;
Step 2. For a sequence {iI}& t-, where i, e {1, ... , p}, k = 1, 2, ... , redesign subcon-

troller iA as an optimal fixed-order centralized controller for the plant and
remaining subcontrollers;

Step 3. Compute the cost J, of the current design and check Jk - J"-1 for
convergence.

Note that the first two steps of the algorithm consist of (i) bringing suboptimal
subcontrollers 'on line' and (ii) iteratively refining each subcontroller. As discussed in
§ 1, the choice of a starting design for Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for subcontroller refinement, note that
each subcontroller redesign procedure is equivalent to replacing a suboptimal
subcontroller with a subcontroller which is optimal with respect to the plant and
remaining subcontrollers.

Proposition 3.1
For a given starting design and redesign sequence {i, }= , suppose that the optimal

projection equations can be solved for each k to yield the global minimum. Then
{J'k }F= is monotonically non-increasing and hence convergent.

Determining both a suitable starting point and redesign sequence for solvability
and attaining the decentralized global minimum remain areas for future research.
With regard to algorithms for solving the optimal projection equations for each
subcontroller redesign procedure, details of proposed algorithms can be found in the
works of Hyland (1983, 1984) and Hyland and Bernstein (1985).

4. Application to interconnected flexible beams
To demonstrate the applicability of the main theorem and the sequential design

algorithm, we consider a pair of simply supported Euler-Bernoulli flexible beams
interconnected by a spring (see the Figure). Each beam possesses one rate sensor and
one force actuator. Retaining two vibrational modes in each beam, we obtain the 8th-
order interconnected model

A Al1  A12] [,=B111 J B=[04.,1]
A A J2, B1 =II B2 =

LA21  A22_ LO4xJ LB 22 j

CI=[CI1 01.4], C2 =[ 1 4 C22 ]
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U2

where

0 0 01
co I - (k/co I)(sin n ci)2  -2 1 oj -(k/w 2 j)(sin nc)(sin 2tc) 0

0 0 0 CON

L - (k/o , ) (sin rc) (sin 2nci) 0 -(02i- (k/O ) (sin 2nc,) 2 2 02, _
0 0 0 0

(k/o 1Ij)(sin nci)(sin ncj) 0 (k/wo2j )(sin nci)(sin 2nc) 0
0 0 0 0

L(k/cij)(sin ncj)(sin 2nci) 0 (k/w 2j)(sin 2rc)(sin 2ncj)I°]j
sisin na2Bij 0 , i C=[0 sin nsi 0 sin 2nsi]

- sin 2naiJ

ai = di/Li, si = Si/Li, ci = il/Li

In the above definitions, k is the spring constant, coj is the jth modal frequency of the
ith beam, * is the damping ratio of the ith beam, L, is the length of the ith beam, and
ai, sj and ei are, respectively, the actuator, sensor and spring-connection coordinates
as measured from the left in the Figure. The chosen values are
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k= 10
(01i ', (02i=4, CI=0005, Li=l, i=1,2

d, =03, , =0"65, , =06

d2 = 08, s2 = 02, c2 =&04

In addition, weighting and intensity matrices are chosen to be =

F 1 [0 0 [0 1 o0l\ . 0
R, = block-diagonal [ /0[o i [o 1/0iJ'[/t

R2 = R3 = 0"112

Vo =block-diagonal [0  01,F[0 O1,[ FO 1 01

V1 = V2 = 0112

For this problem the open-loop cost was evaluated and the centralized 8th-order
LQG design was obtained to provide a baseline. To provide a starting point for the
sequential design algorithm, a pair of 4th-order LQG controllers were designed for
each beam separately ignoring the interconnection, i.e. setting k = 0. The optimal
projection equations were then utilized to iteratively refine each subcontroller. The
results are summarized in the Table.

Design Cost

Open loop 163-5
Centralized LQG
n, = 8 19"99

Suboptimal decentralized
n., = nc2 --4 59.43

Redesign subcontroller 2 28-19
Redesign subcontroller 1 23'29
Redesign subcontroller 2 23.04
Redesign subcontroller 1 22-25
Redesign subcontroller 2 21.94
Redesign subcontroller 1 21.86
Redesign subcontroller 2 21-81
Redesign subcontroller 1 21-79
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1. Introduction

~II Because of implementation constraints, cost, and reliability

considerations, a decentralized controller architecture is often required

for controlling large scale systems. Furthermore, such controllers must be

robust to variations in plant parameters. The present paper addresses both

m of these concerns within the context of a robust decentralized design theory

for continuous-time static controllers.

The approach to controller design considered herein involves

optimizing closed-loop performance with respect to the feedback gains. This

approach to output feedback was studied for centralized controllers in

[8,9] and for decentralized controllers in [101. An interesting feature of

[9,10] is the recognition of an oblique projection (idempotent matrix) which

allows the necessary conditions to be written in terms of a modified Riccati

equation. When the problem is specialized to full-state feedback, the

projection becomes the identity and the modified Riccati equation coincides

with the standard Riccati equation of LQR theory. It should be pointed out

that this oblique projection is distinct from the oblique projection arising

in dynamic compensation ([7]). A unified treatment of the static/dynamic

(nonstrictly proper) centralized control problem involving both projections

is given in [2].

The present paper goes beyond earlier work by deriving sufficient

conditions for robust stability and performance with respect to variations

in the plant parameters. Although plant disturbances are represented in the

usual stochastic manner by means of additive white noise, uncertainty in the

plant dynamics is modeled deterministically by means of constant structured

parameter variations within bounded sets. Thus, for example, the dynamics

p
matrix A is replaced by A + EakAk. where ok is a constant uncertain

k=l
parameter assumed only to lie within the interval [ ,-ak ak] but otherwise

unknown, and Ak is a fixed matrix denoting the structure of the uncertain

parameter ak as it appears in the nominal dynamics matrix A. The system

performance is defined to be the worst-case value over the parameter



uncertainties of a quadratic criterion averaged over the disturbance

statistics.

Since the closed-loop performance can be written in terms of the

second-moment matrix, a performance bound over the class of uncertain

parameters can be obtained by bounding the state covariance. The key to

bounding the state covariance is to replace the usual Lyapunov equation for -

the second-moment matrix by a modified Lyapunov equation. In the present

paper the modified Lyapunov equation is constructed by adding two additional

terms. The first term corresponds to a uniform right shift of the open-loop

dynamics. As is well known ([1]), such a shift may arise from an

exponential performance weighting and leads to a uniform stability margin

for the closed-loop system. In order to obtain robustness with respect to

specified structured parameter variations, however, an additional term of

the form AkQA is required. Such terms arise naturally in systems with

multiplicative white noise; see [41 and the references therein for further

details. The exponential cost weighting and multiplicative noise

interpretations for the uncertainty bound have no bearing in the present

paper, however, since parameter variations are modeled deterministically as

constant variations within bounded sets.

Having bounded the state covariance over the class of parameter

uncertainties, the performance can thus be bounded in terms of the solution

of the modified Lyapunov equation. The performance bound can be viewed as

an auxiliary cost and thus leads to the Auxiliary Minimization Problem:

Minimize the performance bound while satisfying the modified Lyapunov

equation. The nice feature of the auxiliary problem is that necessary

conditions for optimality of the performance bound now serve as sufficient

conditions for robust performance in the original problem. Thus our

approach seeks to rectify one of the principal drawbacks of necessity

theory, namely, guarantees of stability and performance. Furthermore, it

should be noted that if numerical solution of the optimality conditions

yields a local extremal which is not the global optimum, then robust

stability and performance are still guaranteed, although the performance of

the extremal may not be as good as the performance provided by the global

minimum. Philosophically, the overall approach of control design for a

2
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performance bound is related to guaranteed cost control ([6]). We note,

however, that the bound utilized in [6] is nondifferentiable, which

precludes the approach of the present paper.

A further extension of previous approaches considered in the

present paper involves the types of feedback loops considered.

Specifically. the usual approach to static output feedback involves nonnoisy

measurements and weighted controls, while the dual problem involves feeding

back noisy measurements to unweighted controls. This situation leads to an

additional projection ([2]) which is dual to the projection discussed in

[9,10]. The inclusion of the dual case now leads to a pair of modified

Riccati equations coupled by both the uncertainty bounds and the oblique

projections.

In addition to the two types of loops discussed above, one may

wish to consider the two remaining cases, namely, feeding back noisy

measurements to weighted controls and feeding back nonnoisy measurements to

unweighted controls. It is easy to show, however, that the former case

0 A leads to an undefined (i.e., infinite) value for the performance while the

latter case is highly singular and fails to yield explicit gain expressions.

Finally, the scope of the present paper is limited to a rigorous

elucidation of sufficient conditions for robust decentralized output

feedback. Numerical solution of these equations can be carried out by

extending available algorithms for centralized output feedback. Numerical

algorithms for solving a single modified Riccati equation in the absence of

uncertainty bounds are discussed in [101.

2. Notation and Definitions

•x r Rrx l
_ x Rr, E real numbers. rxs real numbers, R expectation

I r )T rxr identity, transpose

, , Kronecker sum, Kronecker product ([5])

S rxr symmetric matrices

3



N r  rxr symmetric nonnegative-definite matrices

p r rxr symmetric positive-definite matrices

z 1 z 2 Z 2-Z1 Nr, Zi p.
Z1 < 2  Z2-Z 1 __ = Z2 =r

asymptotically matrix with eigenvalues in open left half plane
stable matrix

n. r, s. p positive integers

i. j, k indicesl....r j=l, .... s, k=l* .... sp

m., . positive integers, i=l ..... r

ms i, positive integers, j=l,.... s

x n-dimensional vector

uis Yi mis i-dimensional vectors,il...r

u, y.9 mj dimensional vectors, i=l,..., s

A. AA nxn matrices

BiDAB.; . nxm. matrices; Ixn matrices. i=l ..... r

B.i; C j, 1C nxm.i matrices; I .xn matrices, j=l ..... s

Aknxn matrices, k=l,...,p

B ik nxm.i matrices,1....r k=l,....,p

c k  A .xn matrices. j=l .... , k=l ..... Sp

D . m.xi. matrices, i=l, .... r

E cj .xI . matrices, j=l, ....s

a positive number

Aa A + 91
2 n

a k positive number, k=l,.....p

'Y/ k /a, k=lp .... ,p

a k real number. k=l,.....p

| , ...



w 0t). w.(t) n-dimensional. A.-dimensional white noise, j=l.....s
o 3 3

2.

SVO  v. intensities of w O, w.; V = 3 =

Vo. nx. cross intensity of w o , wj, j=l1...s

m.

R. state and control weightings; R C N. R. P
09 0

R. nxm. cross weighting; R -R .R.RT. > 0. i=l...r
oi 1 0 01 1 01-

r s

. AA + ZBiD + ZBE . A + 9
E .C3 +E j •jj 2 n

i=1 j=1

r S

AA AA + A B. DC. + E; .E.C. C

i=l j=l

s5

w(t), WOWt + B iwj(t)

j=l

i iTD.RTr cTDT.D- r- oi a T T T aT

R R + [R C. + C.D. D R.D C.)
0 Ci i Cl 0 o iC3 i ci I

i= 1

s T^T a T T T
v V 0 + J:[V oj ~~E .iB.j + B.iE .V .o + B.iE .jV.jE .iB.]I | + 03 CJ3 J 3CJ 03 3 3 CJ 3~jj

j=l

For arbitrary nxn Q, P define:

p p

R .=R. + 1: YB.TPB., P B.? + R T. + .)VyB.TPA, =,.r
al 1 A.~k~~ al 1 01k

k=l k=1

p TpT
v V a " Q=  VQ+ Q C T + v o A j = l ....s .

ajL 1'kjk k' jo E-k kQCjkk=l k=l

5



3. Robust Stability and Performance Problem

In this section we state the Robust Stability and Performance

Problem along with related notation for later use. Let

~cRg x R n1x ... xR nx riR xx... x R Ls denote the setodf

uncertain perturbations (AA,.&B, .. 4B r*A&C ... .t&C s) of the nominal system

matrices AB.., oCs..9

Robust Stability and Performance Problem. Determine

CDcl .. D c E cl .,E cs) such that the closed-loop system consisting of the

nth-order controlled and disturbed plant

r 5

x(t) =(A+AA)x(t) + Z(Bi*AB.)u.Ct) + ~B u i(t) +w (t), t C[O.o) . (3. 1)

izi j=1

nonnoisy and noisy measurements

y.(t) = C.zt), 1...r (3.2)
1 2.

y.i(t) = (C +A&C)x(t) + w .(t), j=, ... 's, (3.3)

and static output feedback controller

u.(t) = D .iy.(t), i=, ... r, (3.4)

u.(t) =E jy.(t). j=,.,,(3.5)

is asymptotically stable for all variations in U and the performance criterion

JDcis ., cr" cis..S cs)

(3.6)

r r

sup lim sup ExTi (tORx(t) + 2 Lx T(t)R .u.(t) + 2 u T(t)R.u. t)]
U t-GO 0 011 1 i

is minimized.
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For each controller (D ....D cr,Ecll ....E cs) and variation in U,

the closed-loop system (3.1)-(3.5) is given bym

x(t) = (A+AA)x(t) + w(t), t c [Oo), (3.7)

where w(t) is white noise with intensity V Nn .

Remark 3.1. In the case AA,4Bi,Ac. = 0 it is well known that

stabilizability is related to the existence of fixed modes ([111). When

plant uncertainties are present the problem is, of course, far more complex.

In the present paper sufficient conditions for robust stability are obtained

as a consequence of the existence of robust performance bounds.

Remark 3.2. Note that the controller architecture is quite general

in that it includes two distinctly different types of decentralized loops.

The first type, indexed by i=I,....r, involves feeding back nonnoisy

measurements to weighted controls. This is the standard setting in the

optimal output-feedback literature ([8-10]). In addition, we include the

dual situation, indexed by j=l,...,s. which involves feeding back noisy

measurements to unweighted controls. The case in which only one type of

loop is present can be formally recovered from our results by ignoring

B. and C. or B. and C. as required. As noted in Section 1, noisySi 1 J J
measurements cannot be fed back to weighted controls via static control,

while feeding back nonnoisy measurements to unweighted controls is a highly

singular problem.

Remark 3.3. Note that the problem statement is restrictive in the

sense that uncertainties in both the control and observation matrices are

not permitted within the same feedback loop. Although it is indeed possible

to permit such simultaneous uncertainties, the development is considerably

more complex and hence is outside the scope of this paper.

Remark 3.4. The cost functional (3.6) is identical to the LQG

criterion (usually stated in terms of an averaged integral) with the

exception of the supremum for evaluating worst case over U.

7



4. Sufficient Conditions for Robust Stability and Performance

In practice, steady-state performance is only of interest when the

closed-loop system (3.7) is stable over U. The following result, which

expresses the performance in terms of the state covariance, is immediate.

Lemma 4.1. Let (Dcl ..... DE .. .,E cs) be given and suppose the

system (3.7) is stable for all variations in U. Then

J(Dcl ....D crE .. Ec ) = sup tr Q _R, (4.1)U AA

where Q - 4 lim E[x(t)x(t) T NI is the unique solution to
AA t- oo

0 = (A+AA)Q - + Q .(A+iA) + V. (4.2)
AA AA

Remark 4.1. When U is compact. "sup" in (4.1) can be replaced by

"max".

We now seek upper bounds for J(D cl,...,D crEc ... Ecs). Our

assumptions allow us to obtain robust stability as a consequence of robust

performance.

A

Theorem 4.1. Let AQ: n x R x .. , x R r R x

m xl
x R s s -_ Sn be such that

AAQ + Q4 T < Q2(QDcl ... DcrEcI ...c . cs).

(AAAB I .....AB rAc .... ,AC ) C U (4.3)

m x 1  m x2r m1x1 m xi
(Qc ... Dcr cl, . cs -NxR x .. xR x_ x ..

U'



Furthermore, for given (D D.... ,E ..,Es) suppose there exists Q el'
l cr* ci" cs

satisfying

UT
.0 = AQ + QA + Q(QDcl ... ,DcrEcl ..... Ecs ) + V, (4.4)

and suppose the pair (V ,A+AA) is detectable for all variations in U.

g Then, for all variations in U, A+A A is asymptotically stable,

Q - < Q, (4.5)
AA

where QAA satisfies (4.2). and

J(D cl,....D cr,E cl...,E cs) < tr QR. (4.6)

Proof. For all variations in U, (4.4) is equivalent to

0 = (A+AA)Q + Q(A+AA) + O(QD cl .... ,Dcr,Ecl ...,E cs,AA) + V, (4.7)

where

O(QD ... ,E ... E ,AA) 4 (QD ... D E .. Es) _ (AAQ+QAT).
c1, cr, ci'", cs * ci' cr' ci

Note that by (4.3). 0(') > 0 for all variations in U. Since (V/2 A+A) is

detectable for all variations in U, it follows from Theorem 3.6 of [12] that
= 1/2 - -

([V+(Q,Dcl.... D crE c I  ... E ,AA)] A+A) is detectable for all
variations in U. Hence Lemma 12.2 of [12] implies A+AA is asymptotically

stable for all variations in U. Next, subtracting (4.2) from (4.7) yields

0 = (A+AA)(Q-Q -) + (Q-Q -)(A+AA) + O(Q,Dcl .. crEcl .... 9E cs ,AA),

AA AA

or, equivalently, (since A+AA is asymptotically stable)

Go A = - T
Q (A+AA)t (A+AA) t

Q- QA e O(QD c, ...,D oE cl.... E ,soAA)e dt > 0,

9



which implies (4.5). Finally, (4.5) and (4.1) yield (4.6).D

Remark 4.2. If V is positive definite then the detectability

hypothesis of Theorem 4.1 is automatically satisfied.

5. Uncertainty Structure and the Quadratic Lyapunov Bound

The uncertainty set U is assumed to be of the form

U = {(AAAB ... Br,4C1 ... PAC ):

p p

AA EkAk. AB, = EcokBk. i1..r, (5.1)

k=l k=l

p p
Ec. = j="....s, c 1)

k=l k=l

where, for k=l,...,p: (ABlk... rkClk,...Csk ) are fixed matrices

denoting the structure of the parametric uncertainty; c1k is a given

uncertainty bound; and ak is an uncertain parameter. Note that the

uncertain parameters Uk are assumed to lie in a specified ellipsoidal region

in Rp . The closed-loop system thus has structured uncertainty of the form

p

AA E ( .Ak (5.2)

k=l

where

r s

Ak - A. + EBkDciCi + EB E C , k=l..... p. (5.3)

i=1 j=1

10



To obtain explicit gain expressions for (D ....D Ecl .. E)

we assume that, for each k {l.... at most one of the matrices

B lk, ... B rk,C lk .... Csk is nonzero. Note that this assumption does not

preclude the treatment of uncertainties in the input and output matrices.

It requires only that such uncertainties be modeled as uncorrelated.

Given the structure of U defined by (5.1). the bound Q satisfying

(4.3) can now be specified. In the following result Q denotes an arbitrary

element of Nn, not necessarily a solution of (4.4).

Proposition 5.1. Let a be an arbitrary pobitive scalar. Then the

function

.Q(QD cl...D crE cl ..,E) =c aQ + a Ck QA (5.4)

k=l

satisfies (4.3) with U given by (5.1).

Proof. Note that

* p
0 < (C' /27k /a k)I n-(a k/a 1/2 )Ak- C 1/2 'k/ In( a1/2 )A- T

p p p

kE(al k )Q aa kAkQAk - EOk(kQLlkV
k=l k=l k=l

which yields (4.3).E

Remark 5.1. Note that the bound SQ given by (5.4) consists of two

distinct terms. The first term CIQ can be thought of as arising from an

exponential time weighting of the cost, or, equivalently, from a uniform

L! 1i

pa



right shift of the open-loop dynamics ([1). The second term a 2 Q

k=l
arises naturally from a multiplicative white noise model ([3,4]). Such

interpretations have no bearing on the results obtained here since only the

bound D defined by (5.4) is required. Note that the bound is valid for all

positive a.

Remark 5.2. The conservatism of the bound (5.4) is difficult to

predict for two reasons. First, the overbounding (4.3) holds with respect

to the partial ordering of the nonnegative-definite matrices for which no

scalar measure of conservatism is available. And, second, the bound (4.3)

is required to hold for all nonnegative-definite matrices Q and feedback

gains (Dcl ... D crEcl 9... E cs). The conservatism will thus depend upon the

actual values of Q, Dcl ..,D crE cl ... Ecs determined by solving (4.4).

6. The Auxiliary Minimization Problem and Necessary Conditions for

Optimal ity

Rather than minimizing the actual cost (3.6), we shall consider the

upper bound (4.6). This leads to the following problem.

Auxiliary Minimization Problem. Determine

(QDcl ... D crE cl, .... E cs) which minimizes

j(QD cl, .... DcrE .... E cs) 4 tr QR (6.1)

subject to

QfNn  (6.2)

T P -
- - (6.3)

0 =AaQ + QACI + 1: -YA QAK + V(63
k-kk=l

and

12



1/2(V I,A+A) is detectable for all variations in U. (6.4)

m The relationship between the Auxiliary Minimization Problem and the

Robust Stability and Performance Problem is straightforward as shown by the

following observation.

m Proposition 6.1. If (Q,D .... D E .... E ) satisfies
cis cr' c1'" . Cs

(6.2)-(6.4) then A-+e- is asymptotically stable for all variations in U, and

J(D.. ...,D E sE) J(Q,D, ... Dc,Ec ... E). (6.5)

Proof. With 2 given by (5.4), Proposition 5.1 implies that (4.3)

is satisfied. Since the hypotheses of Theorem 4.1 are satisfied, robust

stability with performance bound (4.6) is guaranteed. Note that with

definition (6.1), (6.5) is merely a restatement of (4.6).0I

The derivation of the necessary conditions for the Auxiliary

Minimization Problem is based upon the Fritz John form of the Lagrange

multiplier theorem.* Rigorous application of this technique requires that

(Q,Dcl.... D crEc ...,E cs) be restricted to the open set

S {(Q,D ....D E ...,E): QEpn and A is asymptotically stable),
cl'" Cr' cl' c

where

p

A _ APAa + AeAk.

k=l

*The Kuhn-Tucker theorem requires a priori verification of a constraint

qualification which is impossible to confirm in the present context. The

Fritz John version is less restrictive and hence more suitable in the

present context.
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The requirement (Q,Dcl ..... Dcr, Ec ....E cs) i S implies that Q and its
nonnegative-definite dual P are unique solutions of the modified Lyapunov

equations (6.3) and

p

S++(6.6)

k=l

An additional technical requirement is that (QUDc, ..,Dr,E .... E) be

confined to the set

S = {(QDcl... &DcrDEci E ... MEcs) CS: CiQC. > 0, i=1....

and B ,B > 0. j=l....,s}.
+ J

The positive definiteness conditions in the definition of S bold when C.
-- 1

and B. have full row and column rank, respectively, and Q and P are positive3
definite. As can be seen from the proof of Theorem 6.1 these conditions

imply the existence of the projections i and r. corresponding to the two1 3
+

distinct types of feedback loops. Note that S is open.

Remark 6.1. As pointed out in Remark 3.1, the set S may be empty

in which case, of course, our results do not apply. As will be seen,

however, our approach does not require explicit verification that S is

nonempty since robust stability is obtained as a consequence of robust

performance.

Remark 6.2. As will be seen, the constraint

(Q,Dc D... D crEcl...,E cs) S need not be verified in practice and is not

required for either robust stability or robust performance since Proposition

6.1 shows that only (6.2)-(6.4) are needed. Rather, the set S constitutes

sufficient conditions under which the Lagrange multiplier technique is

applicable to the Auxiliary Minimization Problem. Specifically, the

condition Q > 0 replaces (6.2) by an open set constraint, while the

asymptotic stability of A serves as a normality condition which further

implies that the dual P of Q is nonnegative definite.
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Necessary conditions for the Auxiliary Minimization Problem can now

be obtained.

Theorem 6.1. If (Q,Dc, .,D ,E ,...,E ) S solves the
c' cr Ci CS -

Auxiliary Minimization Problem with U given by (5.1) then there exists

PEN n such that Dc .....D ,E ... ,E are given by
-l cr c19 Cs

-R P QC.(C QC.) , i=1 .. . (6.7)
c 3 ai ai Ii I

-1^T -1
E = -(B.PB.) BjPQajVaj' j=l, ... s, (6.8)

and such that Q, P satisfy

r t

0 (Aa-'E.R- .P .7.)Q + Q(AJ-"1j R -1 P T_ i ai ai i_. i ai ai~i Vo

i=l i=1

p r r

+ R PT )Q( -YB.)T (6.9)
+ ykk KEB ik alia711K( i ai 1
k=1 i=1 i=1

5 s

L.Qaj aj aj + J %jjaj ajaj j.1'
j=1 j=1

I

s s

0 = A.-1Sr. vC.T + P(Ace-Y'+Q .V-IC.) + R
(AC 2: ajaj J) aj aj 0

j=1 j=1

p ss

T .VA QC'~- V- C ) (6.10)
+ L k( aj a3 Ej aj aj jk

k=1 j=1 j=1

r r
_ ' T 1T T -1
-;P'.R l. + a'. .R aP ip-

a -T aa ai ill
i=1 i=l

where

1
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"T T -I^

7. = QCi(CiQC.) Cis ril = " - I i 1 .... r, (6.11)

T -1= B.(BP B. BjL : - In. s. (6.12)

Furthermore, the auxiliary cost is given by

p .T T -1 -1p - R-1p

,(Q.D .. DD E E ) = tr[Q(R +- r.P .R .R.R .P ...- 2R R7P ..- .)].
'. Dcr'l . s oL... i ai ai i ai ai i oi a. al i

i= 1
(6.13)

Conversely, if there exist Q, P CN n satisfying (6.9) and (6.10) then Q

satisfies (6.3) with (Dcl .. D cr,Ecl ..... E cs) given by (6.7) and (6.8), and

J(QD cl ...,D cr,Ecl .... .Ecs ) is given by (6.13).

Proof. To optimize (6.1) over the open set S, where

__S {(Q, Dcl, D crE c, .,E _)S (6.4) is satisfied},

subject to the constraint (6.3), form the Lagrangian

p

L(Q.D cs*,D cr*E *l...,E cs) 4- tr[XQR + (AQ+QA +E)yA QAA+V)P],

k=l

where the Lagrange multipliers X > 0 and P C Rnx n are not both zero. Setting

bL/aQ = 0, X = 0 implies P = 0 since A is asymptotically stable. Hence,

without loss of generality set X 1. Thus the stationarity conditions are

given by

p

= -&p + PAe + E P + R 0, (6.14)

k=1

A8_ AT AT 0R D .C.QC_ + P C. = 0, .... (6.15)D. ai ci . i. at
Cl

S= B.PB .E .V . + B PQ . (6.16)

aEcj a aj
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+ T -
Since (Q,D cl ...,D ,EEcs) E S a C.QC. and B.PB. are invertible and

hence (6.15) and (6.16) imply (6.7) and (6-8). Finally, (6.9) and (6.10)

are equivalent to (6.3) and (6.6). -

Remark 6.3. Several special cases can be recovered formAlly from

Theorem 6.1. For example, when the control weighting is nonsingular and the

measurement noise is zero, i.e., when u. and y, are absent for i=1....r,

delete (6.8) and set t. = 0 in (6.9). In this case the last two terms in3
(6.9) can be deleted. Deleting also the uncertainty terms A, Bik, Cjk

yields the results of 1101 with the added features of correlated

plant/measurement noise (V oj) and cross weighting (R oi). Furthermore,

assuming a centralized structure for the static controller, i.e., r=l,

yields the usual static output feedback result ([8,91).

7. Sufficient Conditions for Robust Stability and Performance

We now combine Proposition 6.1 and Theorem 6.1 to obtain sufficient

conditions for robust stability and performance.

Theorem 7.1. Suppose there exist Q. P N1P satisfying (6.9) and
-1/2

(6.10) and suppose that (V /A4AA) is detectable for all variations in U

with (Dcl ... ,D cr,E cl.... •Ecs) given by (6.6) and (6.7) and U given by

(5.1). Then, with (Dcl ... D ,E cl....E cs) given by (6.6) and (6.7), A+AA

is asymptotically stable for all variations in U, and the performance of the

closed-loop system satisfies the bound

p ST T -1 -1I-

J(m .... D DE .. ,Es) < tr[Q(R + -. P .R .R.R .1 ..- 2R *R.P .r.)].
• " -- o 1_ i ai al 1 ai 1 oi a a1

(7.1)

Proof. The converse of Theorem 6.1 shows that Q satisfies (6.3)

with (Dcl ...*D cr,E cl,...,E cs) given by (6.7) and (6.8). Hence, with the

detectability assumption (6.4), Proposition 6.1 implies robust stability and

performance.

17
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Remark 7.1. The application of Theorem 7.1 in practice requires

1) numerical solution of (6.9) and (6.10), and 2) verification of the

detectability hypothesis. No other assumptions need be verified in applying

this result.

8. Concluding Remarks

We have developed a theory of robust decentralized output feedback

via static control. The development permits the treatment of noisy and

nonnoisy measurements, weighted and unweighted controls, and structured

real-valued parameter uncertainties in the plant matrices. The theory

provides a robustification of results given in [8-101 for both centralized

and decentralized optimal output feedback. The theory is constructive in

nature rather than existential. Specifically, the main result, Theorem 7.1,

involves a coupled pair of modified Riccati equations (6.9), (6.10) whose

solutions, when they exist, are used to explicitly construct feedback gains

(6.7), (6.8) which are guaranteed to provide both robust stability and

performance. Future research is required for evaluating the

conservativeness of the theory. The numerical algorithms developed in [101

provide a starting point in this regard.

1-1
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